Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 5886 x^{13} - 850971 x^{12} + 2780 x^{11} + 204791405 x^{10} - 41499142 x^{9} + 61421290143 x^{8} - 7995133208 x^{7} - 12918699536515 x^{6} - 45621986975278 x^{5} - 2108604337447076 x^{4} - 386139934252072 x^{3} + 266577755600244992 x^{2} + 1432339139767432576 x + 20138270326434543616 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(526463173424807410745021702403427128295303807818937=73^{15}\cdot 79^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1479.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $73, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{632} a^{8} - \frac{1}{316} a^{7} + \frac{51}{316} a^{6} - \frac{23}{158} a^{5} - \frac{31}{158} a^{4} + \frac{49}{316} a^{3} + \frac{51}{632} a^{2} - \frac{57}{316} a - \frac{37}{79}$, $\frac{1}{632} a^{9} + \frac{19}{632} a^{7} - \frac{125}{632} a^{6} - \frac{71}{632} a^{5} + \frac{87}{632} a^{4} + \frac{21}{79} a^{3} + \frac{67}{632} a^{2} + \frac{133}{316} a + \frac{5}{79}$, $\frac{1}{632} a^{10} - \frac{1}{79} a^{7} + \frac{31}{158} a^{6} + \frac{9}{316} a^{5} + \frac{75}{632} a^{4} + \frac{45}{158} a^{3} + \frac{83}{316} a^{2} - \frac{41}{158} a - \frac{8}{79}$, $\frac{1}{1264} a^{11} - \frac{1}{1264} a^{10} - \frac{1}{1264} a^{9} + \frac{9}{632} a^{7} + \frac{141}{632} a^{6} - \frac{55}{1264} a^{5} - \frac{105}{1264} a^{4} - \frac{425}{1264} a^{3} + \frac{203}{632} a^{2} + \frac{43}{158} a - \frac{28}{79}$, $\frac{1}{5056} a^{12} + \frac{1}{5056} a^{11} - \frac{1}{5056} a^{10} + \frac{1}{2528} a^{9} + \frac{1}{2528} a^{8} - \frac{111}{2528} a^{7} - \frac{111}{5056} a^{6} + \frac{377}{5056} a^{5} - \frac{49}{5056} a^{4} + \frac{71}{1264} a^{3} + \frac{77}{1264} a^{2} + \frac{24}{79} a + \frac{21}{79}$, $\frac{1}{5056} a^{13} - \frac{1}{2528} a^{11} + \frac{3}{5056} a^{10} + \frac{295}{5056} a^{7} - \frac{3}{316} a^{6} - \frac{89}{2528} a^{5} + \frac{997}{5056} a^{4} + \frac{149}{316} a^{3} - \frac{155}{1264} a^{2} - \frac{107}{316} a - \frac{30}{79}$, $\frac{1}{38842892065792} a^{14} + \frac{1414933175}{19421446032896} a^{13} + \frac{3316927015}{38842892065792} a^{12} + \frac{963642599}{9710723016448} a^{11} - \frac{11264540619}{38842892065792} a^{10} + \frac{10418151787}{19421446032896} a^{9} + \frac{28316981873}{38842892065792} a^{8} + \frac{344310760959}{9710723016448} a^{7} - \frac{2548185026465}{38842892065792} a^{6} - \frac{2167215058749}{19421446032896} a^{5} - \frac{6407212799423}{38842892065792} a^{4} + \frac{4811883570685}{9710723016448} a^{3} + \frac{3912433880815}{9710723016448} a^{2} - \frac{1014704695401}{2427680754112} a - \frac{13377491697}{151730047132}$, $\frac{1}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{15} + \frac{14162107335138616741832158872348201624333354054468242825303017917522969663952431}{1314971604740720722983247190450410040342933389837772374743435282584929460146967181753480682496} a^{14} - \frac{18284813785685141955522369549875849842725418350837384315430615374660667002785734572919208593}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{13} + \frac{2500053525430610848870011868840719180345252580556851712645270642098436181798791395607546647}{25970689193629234278919132011395598296772934449296004401182846831052356837902601839631243479296} a^{12} + \frac{76622368791278742575578759761434043465025245265488504393065287065593824993219000946013466133}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{11} + \frac{55392631881984870041246893686951928755232330087807772855147064396633863745085709483093814205}{103882756774516937115676528045582393187091737797184017604731387324209427351610407358524973917184} a^{10} + \frac{43272786958666932648429048736144270318122051325465049182294248042293789509440644633769183945}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{9} + \frac{9079479832538739981272928890998412054010742114801449379296255430130230631332675643769867319}{12985344596814617139459566005697799148386467224648002200591423415526178418951300919815621739648} a^{8} + \frac{7174921014988989792267825044096091460615460127153219993127330145187870150481080458010432530047}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{7} - \frac{9220463792743420389673191540956076383716377420677830957601198328558989793389946473551636194111}{103882756774516937115676528045582393187091737797184017604731387324209427351610407358524973917184} a^{6} - \frac{28332032254483224743177615707302684990167586400689393798323152420704341451154281744673090702231}{207765513549033874231353056091164786374183475594368035209462774648418854703220814717049947834368} a^{5} - \frac{2641268074527908926262928209073885251964390150978301550036915667868244314523921282611727494515}{25970689193629234278919132011395598296772934449296004401182846831052356837902601839631243479296} a^{4} + \frac{20726683041093718176407995998887521328531729006202774954386101241180507514858778162314699120355}{51941378387258468557838264022791196593545868898592008802365693662104713675805203679262486958592} a^{3} - \frac{401306290429338582529777089334255880152367251385580879339212356086509680355943316775931018307}{6492672298407308569729783002848899574193233612324001100295711707763089209475650459907810869824} a^{2} - \frac{1551403386768532466449919481255965730201789975233456723126996080711631559811335787782053769609}{3246336149203654284864891501424449787096616806162000550147855853881544604737825229953905434912} a - \frac{65181928874363078512174708207420801282895663414962210184167820002789563778934793254740819093}{202896009325228392804055718839028111693538550385125034384240990867596537796114076872119089682}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15933210727600000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.430297067158108196857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 73 | Data not computed | ||||||
| $79$ | 79.8.6.3 | $x^{8} - 79 x^{4} + 18723$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 79.8.6.3 | $x^{8} - 79 x^{4} + 18723$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |