Normalized defining polynomial
\( x^{16} - 5 x^{15} - 3 x^{14} + 47 x^{13} + 40 x^{12} - 447 x^{11} - 210 x^{10} + 2630 x^{9} + 1066 x^{8} - 8828 x^{7} - 15935 x^{6} + 34586 x^{5} + 73962 x^{4} - 98427 x^{3} - 118200 x^{2} + 80375 x + 68249 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52222277247435505100000000=2^{8}\cdot 5^{8}\cdot 11\cdot 29^{4}\cdot 509^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29, 509$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} + \frac{13}{29} a^{10} + \frac{2}{29} a^{9} + \frac{6}{29} a^{8} + \frac{12}{29} a^{7} - \frac{12}{29} a^{6} + \frac{3}{29} a^{5} + \frac{14}{29} a^{3} - \frac{5}{29} a^{2} + \frac{12}{29} a - \frac{11}{29}$, $\frac{1}{29} a^{13} + \frac{13}{29} a^{11} + \frac{2}{29} a^{10} + \frac{6}{29} a^{9} + \frac{12}{29} a^{8} - \frac{12}{29} a^{7} + \frac{3}{29} a^{6} + \frac{14}{29} a^{4} - \frac{5}{29} a^{3} + \frac{12}{29} a^{2} - \frac{11}{29} a$, $\frac{1}{9251} a^{14} + \frac{41}{9251} a^{13} - \frac{125}{9251} a^{12} + \frac{4479}{9251} a^{11} + \frac{3775}{9251} a^{10} - \frac{4426}{9251} a^{9} - \frac{135}{319} a^{8} - \frac{4494}{9251} a^{7} - \frac{4166}{9251} a^{6} - \frac{1966}{9251} a^{5} - \frac{2186}{9251} a^{4} - \frac{3662}{9251} a^{3} + \frac{2534}{9251} a^{2} - \frac{1614}{9251} a + \frac{1605}{9251}$, $\frac{1}{5500267707666295762925122121} a^{15} - \frac{78660998100796078868115}{5500267707666295762925122121} a^{14} - \frac{30409125283530796261821841}{5500267707666295762925122121} a^{13} + \frac{14337337230214650921275713}{5500267707666295762925122121} a^{12} - \frac{13617058784102165529698197}{189664403712630888376728349} a^{11} - \frac{1645104588692031202441118918}{5500267707666295762925122121} a^{10} + \frac{1231235333343947218579174423}{5500267707666295762925122121} a^{9} - \frac{781090261216155971250812596}{5500267707666295762925122121} a^{8} + \frac{1496839593719307102700057094}{5500267707666295762925122121} a^{7} - \frac{8109073845290307262509156}{289487774087699776996059059} a^{6} + \frac{507134553959587127994176476}{5500267707666295762925122121} a^{5} - \frac{1719459160875741980172687888}{5500267707666295762925122121} a^{4} + \frac{1558606317145030983569163799}{5500267707666295762925122121} a^{3} + \frac{1319979733757852436859331205}{5500267707666295762925122121} a^{2} + \frac{495145480994619130585728534}{5500267707666295762925122121} a + \frac{1252827054464114930606564729}{5500267707666295762925122121}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9311584.24898 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 152 conjugacy class representatives for t16n1719 are not computed |
| Character table for t16n1719 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.369025.1, 4.4.725.1, 4.4.12725.1, 8.8.136179450625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.7 | $x^{8} + 2 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 509 | Data not computed | ||||||