Normalized defining polynomial
\( x^{16} - 2 x^{15} - 67 x^{14} + 143 x^{13} - 88 x^{12} - 3848 x^{11} + 25904 x^{10} + 173397 x^{9} + 1683238 x^{8} - 8854192 x^{7} - 34531314 x^{6} + 138673151 x^{5} - 89105387 x^{4} - 105159148 x^{3} + 35679363 x^{2} + 90002488 x + 31776832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52039206599103315275932373479504463569=29^{14}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $227.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{58} a^{8} - \frac{1}{58} a^{7} - \frac{5}{58} a^{6} - \frac{3}{29} a^{5} + \frac{5}{29} a^{4} - \frac{1}{58} a^{3} - \frac{9}{58} a^{2} - \frac{9}{58} a + \frac{8}{29}$, $\frac{1}{696} a^{9} - \frac{1}{696} a^{8} - \frac{25}{116} a^{7} - \frac{37}{87} a^{6} + \frac{329}{696} a^{5} + \frac{53}{116} a^{4} - \frac{45}{116} a^{3} - \frac{125}{696} a^{2} - \frac{245}{696} a + \frac{1}{3}$, $\frac{1}{696} a^{10} + \frac{5}{696} a^{8} + \frac{47}{348} a^{7} - \frac{17}{232} a^{6} - \frac{289}{696} a^{5} + \frac{9}{29} a^{4} + \frac{5}{24} a^{3} + \frac{157}{348} a^{2} - \frac{25}{696} a - \frac{7}{87}$, $\frac{1}{696} a^{11} + \frac{1}{232} a^{8} + \frac{33}{232} a^{7} + \frac{93}{232} a^{6} - \frac{157}{696} a^{5} - \frac{317}{696} a^{4} - \frac{41}{87} a^{3} + \frac{3}{29} a^{2} - \frac{55}{696} a + \frac{11}{87}$, $\frac{1}{221328} a^{12} - \frac{31}{55332} a^{11} - \frac{35}{55332} a^{10} + \frac{5}{7632} a^{9} + \frac{1657}{221328} a^{8} - \frac{1553}{221328} a^{7} - \frac{23195}{73776} a^{6} - \frac{997}{2544} a^{5} - \frac{10481}{55332} a^{4} - \frac{748}{13833} a^{3} - \frac{19081}{221328} a^{2} - \frac{31103}{110664} a + \frac{2116}{13833}$, $\frac{1}{8631792} a^{13} - \frac{7}{4315896} a^{12} + \frac{53}{81432} a^{11} - \frac{1693}{2877264} a^{10} + \frac{75}{319696} a^{9} + \frac{7663}{2877264} a^{8} - \frac{55357}{663984} a^{7} - \frac{1228333}{2877264} a^{6} + \frac{2118851}{4315896} a^{5} + \frac{454955}{4315896} a^{4} - \frac{1315447}{2877264} a^{3} + \frac{236893}{479544} a^{2} - \frac{9397}{20358} a + \frac{72170}{539487}$, $\frac{1}{3003863616} a^{14} + \frac{55}{1001287872} a^{13} - \frac{2387}{3003863616} a^{12} - \frac{698765}{3003863616} a^{11} - \frac{124159}{500643936} a^{10} + \frac{466267}{1001287872} a^{9} - \frac{4315027}{3003863616} a^{8} - \frac{278861771}{3003863616} a^{7} - \frac{685456951}{1501931808} a^{6} - \frac{449996123}{1001287872} a^{5} + \frac{289904369}{3003863616} a^{4} - \frac{447798053}{1001287872} a^{3} - \frac{259261039}{3003863616} a^{2} - \frac{16416221}{62580492} a - \frac{736634}{46935369}$, $\frac{1}{8689714911536849472919164487247808} a^{15} + \frac{1177402519194158877167045}{8689714911536849472919164487247808} a^{14} + \frac{334068295734608528665439149}{8689714911536849472919164487247808} a^{13} + \frac{3506322012018061186020499265}{2896571637178949824306388162415936} a^{12} + \frac{2257952195578646145439151735575}{4344857455768424736459582243623904} a^{11} - \frac{327274530875508319457132653319}{965523879059649941435462720805312} a^{10} + \frac{2120793758120511896767302483749}{8689714911536849472919164487247808} a^{9} - \frac{72540214592616813984576399851227}{8689714911536849472919164487247808} a^{8} + \frac{202508748916427297065402025802359}{1448285818589474912153194081207968} a^{7} - \frac{2763074456739574305118598041940473}{8689714911536849472919164487247808} a^{6} + \frac{3461851839554768029868250429923345}{8689714911536849472919164487247808} a^{5} + \frac{2224694364901664004221322482014777}{8689714911536849472919164487247808} a^{4} - \frac{3261009192754602991254089670795631}{8689714911536849472919164487247808} a^{3} + \frac{68042522126082683381352484709003}{1086214363942106184114895560905976} a^{2} + \frac{259097129789033397175880008940089}{543107181971053092057447780452988} a - \frac{22021110272121646678420227378298}{135776795492763273014361945113247}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27920120795000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{1537}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{53}) \), 4.4.68508701.1 x2, 4.4.1292617.1 x2, \(\Q(\sqrt{29}, \sqrt{53})\), 8.8.4693442112707401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.8.6.2 | $x^{8} + 477 x^{4} + 70225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |