Normalized defining polynomial
\( x^{16} - 4 x^{15} + 305 x^{14} - 591 x^{13} - 2277 x^{12} - 29499 x^{11} - 4287707 x^{10} - 9682635 x^{9} - 22008114 x^{8} + 448957127 x^{7} + 13256524043 x^{6} + 28506195667 x^{5} - 91601657871 x^{4} - 672880822233 x^{3} - 5109366359220 x^{2} - 1215733652348 x + 43106377080817 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(519500614265953437911136445884676352=2^{8}\cdot 17^{15}\cdot 26626013^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 26626013$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{404} a^{13} - \frac{11}{101} a^{11} + \frac{57}{404} a^{10} + \frac{19}{101} a^{9} - \frac{25}{101} a^{8} + \frac{193}{404} a^{7} - \frac{73}{202} a^{6} + \frac{137}{404} a^{5} + \frac{57}{404} a^{4} + \frac{3}{404} a^{3} - \frac{2}{101} a^{2} - \frac{29}{404} a + \frac{31}{101}$, $\frac{1}{613787690783562770852} a^{14} - \frac{134678145613433350}{153446922695890692713} a^{13} + \frac{23262512169383682653}{306893845391781385426} a^{12} - \frac{165006840200437756931}{613787690783562770852} a^{11} + \frac{20914219509753587027}{153446922695890692713} a^{10} - \frac{6456403331888680477}{306893845391781385426} a^{9} + \frac{152890338172218489649}{613787690783562770852} a^{8} - \frac{78798205146252150857}{306893845391781385426} a^{7} - \frac{284320986458226251233}{613787690783562770852} a^{6} + \frac{38595030888852376025}{613787690783562770852} a^{5} - \frac{17074449892779533383}{47214437752581751604} a^{4} + \frac{555280296520268287}{3038552924671102826} a^{3} + \frac{167483176256006860885}{613787690783562770852} a^{2} - \frac{18470873745635238341}{153446922695890692713} a + \frac{123871011327127595415}{306893845391781385426}$, $\frac{1}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a^{15} - \frac{156248293358513445097344610950428871651904844158141782597}{720372856791866358413782676530398136523396614203587372134840280826665850501166} a^{14} - \frac{18191772946744777391011968889857108531757525270809524298178073943923592437}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a^{13} + \frac{16973673314576337080857294763629021736178401260412153205203417270221554008121}{360186428395933179206891338265199068261698307101793686067420140413332925250583} a^{12} - \frac{27142586272487974669387816283335722227423936888590865701770329037745022191551}{55413296676297412185675590502338318194107431861814413241141560063589680807782} a^{11} - \frac{199711744436949323625839221013529122019015507383288532808698837170217886501641}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a^{10} - \frac{39161947179837318086487109625692570836284433150049696698704677332373242532492}{360186428395933179206891338265199068261698307101793686067420140413332925250583} a^{9} + \frac{65811713276590885736106010226368687931330707262165133978341380694529539092715}{360186428395933179206891338265199068261698307101793686067420140413332925250583} a^{8} - \frac{126909659826195586150722505560308091720645992712281713235956717980102312853995}{360186428395933179206891338265199068261698307101793686067420140413332925250583} a^{7} + \frac{478447528518803052256492862433262805037041262978488056988016265382343529541}{27706648338148706092837795251169159097053715930907206620570780031794840403891} a^{6} - \frac{307996185450829798397451347642091900214357536440268747899963086861827349603863}{720372856791866358413782676530398136523396614203587372134840280826665850501166} a^{5} + \frac{25497312149185266346074457123636774217662903389501150699406411210529380920198}{360186428395933179206891338265199068261698307101793686067420140413332925250583} a^{4} + \frac{289955145809846694071084786798444909598550943660935371243756205087315973214071}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a^{3} - \frac{608186255761120072090944336801869905759649435899747884082909506837367302607629}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a^{2} - \frac{548425166146912732662524025344427808424555701349630081415015087977227494369463}{1440745713583732716827565353060796273046793228407174744269680561653331701002332} a + \frac{411444824847642464085799616192362391693153802859869071142152738150807345944485}{1440745713583732716827565353060796273046793228407174744269680561653331701002332}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 670771901779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 26626013 | Data not computed | ||||||