Normalized defining polynomial
\( x^{16} - 4 x^{15} - x^{14} + 17 x^{13} - 18 x^{12} - 5 x^{11} + 61 x^{10} + 4 x^{9} - 106 x^{8} - 89 x^{7} - 358 x^{6} + 71 x^{5} + 1516 x^{4} - 71 x^{3} - 1135 x^{2} + 117 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(516387172268851080441049=13^{12}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} + \frac{4}{9} a$, $\frac{1}{13110851874832533} a^{15} - \frac{66208536636274}{1456761319425837} a^{14} - \frac{606467944873720}{13110851874832533} a^{13} + \frac{707880667673614}{13110851874832533} a^{12} - \frac{399823210744544}{13110851874832533} a^{11} + \frac{600370365238763}{13110851874832533} a^{10} + \frac{241063650759596}{1456761319425837} a^{9} - \frac{1760586777568463}{13110851874832533} a^{8} + \frac{4539947795134}{485587106475279} a^{7} - \frac{1021516110054710}{13110851874832533} a^{6} + \frac{1764764365091078}{4370283958277511} a^{5} + \frac{5354218253295167}{13110851874832533} a^{4} + \frac{877449916258817}{4370283958277511} a^{3} + \frac{5652477893500135}{13110851874832533} a^{2} - \frac{409353844079537}{1456761319425837} a - \frac{3579041198280}{161862368825093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1638093.57871 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.8.718600843493.1, 8.4.1042962037.1, 8.4.55276987961.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53 | Data not computed | ||||||