Normalized defining polynomial
\( x^{16} - 7 x^{15} + 26 x^{14} - 239 x^{13} + 696 x^{12} + 3867 x^{11} - 18073 x^{10} - 9814 x^{9} + 96124 x^{8} + 66818 x^{7} - 269519 x^{6} - 788087 x^{5} + 1399987 x^{4} + 1685500 x^{3} - 3041668 x^{2} - 1014722 x + 2074829 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51293346320079940269505352322033=3^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{284034260049647522465209526156022081390583} a^{15} + \frac{131340948795977027324547144500420125151066}{284034260049647522465209526156022081390583} a^{14} - \frac{109175783117550375465126110772922736484102}{284034260049647522465209526156022081390583} a^{13} + \frac{43991419418218194186814998996799702264022}{284034260049647522465209526156022081390583} a^{12} - \frac{23046597840259715953508747749694855467960}{284034260049647522465209526156022081390583} a^{11} - \frac{128404387218755940392503551302250950188445}{284034260049647522465209526156022081390583} a^{10} - \frac{133426002705102781964101111581413045712590}{284034260049647522465209526156022081390583} a^{9} + \frac{8308380893220324564765267960460270909738}{284034260049647522465209526156022081390583} a^{8} - \frac{65722432704979654355773807266044944715184}{284034260049647522465209526156022081390583} a^{7} - \frac{25319813268384502382703614019009205664866}{284034260049647522465209526156022081390583} a^{6} - \frac{33450561588367229253968283530729594967929}{284034260049647522465209526156022081390583} a^{5} + \frac{309606012778940903452053776937213404826}{284034260049647522465209526156022081390583} a^{4} + \frac{35836256696768062011510582153891302171113}{284034260049647522465209526156022081390583} a^{3} + \frac{84927848755757475492826258593979896146619}{284034260049647522465209526156022081390583} a^{2} + \frac{25684078159961565144057385006229061759054}{284034260049647522465209526156022081390583} a - \frac{119503020987708022273378153573128712461937}{284034260049647522465209526156022081390583}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2334035612.49 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||