Normalized defining polynomial
\( x^{16} - 7 x^{15} - 84 x^{14} + 577 x^{13} + 297 x^{12} - 9224 x^{11} + 95140 x^{10} - 13701 x^{9} - 1432142 x^{8} + 1672363 x^{7} - 3794428 x^{6} - 84195244 x^{5} + 120147984 x^{4} + 720593456 x^{3} - 1588306153 x^{2} + 2329602032 x + 1278574016 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50744262454554467455972799262367678441=11^{10}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $227.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{44} a^{14} - \frac{1}{11} a^{13} + \frac{9}{44} a^{12} + \frac{2}{11} a^{11} - \frac{5}{22} a^{10} - \frac{5}{22} a^{9} - \frac{3}{11} a^{8} - \frac{3}{44} a^{7} + \frac{21}{44} a^{6} - \frac{21}{44} a^{5} - \frac{7}{22} a^{4} - \frac{15}{44} a^{3} - \frac{19}{44} a^{2} - \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{83603655674742263739228332124236549812906456720697945614370006748736} a^{15} + \frac{606539529952492999448851724604053741078992455846174571631789676321}{83603655674742263739228332124236549812906456720697945614370006748736} a^{14} - \frac{2030054720545955909992098457062950095838554826260385545838943971523}{20900913918685565934807083031059137453226614180174486403592501687184} a^{13} + \frac{718404789364848004671793371986248974842794343422943121726235310897}{83603655674742263739228332124236549812906456720697945614370006748736} a^{12} + \frac{9226723344947309853587803760870168519860859322070319071030776817809}{83603655674742263739228332124236549812906456720697945614370006748736} a^{11} + \frac{92663647411464620143254935337174010599643825518437609569517033235}{475020770879217407609251887069525851209695776822147418263465947436} a^{10} - \frac{10273123268642438522314229798076796731099520596234916159725468410671}{20900913918685565934807083031059137453226614180174486403592501687184} a^{9} + \frac{28853248014764900840036618925925165691070046410384798974670550127867}{83603655674742263739228332124236549812906456720697945614370006748736} a^{8} - \frac{5645446937051131089711836239950106400565907895527207373540428804107}{41801827837371131869614166062118274906453228360348972807185003374368} a^{7} - \frac{2446515013637950267947697831625827732969307272314163653272923533637}{83603655674742263739228332124236549812906456720697945614370006748736} a^{6} + \frac{9253779831784648241361503034342799737154623057408118004895187557595}{20900913918685565934807083031059137453226614180174486403592501687184} a^{5} - \frac{559403773619169661870326922360423462426168705755073264186899713399}{20900913918685565934807083031059137453226614180174486403592501687184} a^{4} - \frac{104179590326395613748066842450500425035841456371655501836035170829}{1306307119917847870925442689441196090826663386260905400224531355449} a^{3} - \frac{806615161232752444204974345812305442741532452588623660938991550673}{5225228479671391483701770757764784363306653545043621600898125421796} a^{2} + \frac{2742160863799715536888233074953019293353174754975073575862191884263}{83603655674742263739228332124236549812906456720697945614370006748736} a - \frac{1414387284962310788867813083807078575239372503267809779785442058917}{10450456959342782967403541515529568726613307090087243201796250843592}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16121598056300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||