Normalized defining polynomial
\( x^{16} - 8 x^{15} + 4 x^{14} + 112 x^{13} - 4365 x^{12} + 24370 x^{11} + 99979 x^{10} - 719664 x^{9} - 71786 x^{8} + 4866906 x^{7} - 9360109 x^{6} + 7762122 x^{5} + 37615615 x^{4} - 80920028 x^{3} + 100836801 x^{2} - 60129950 x + 14685509 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50744262454554467455972799262367678441=11^{10}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $227.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{8} - \frac{2}{11} a^{7} + \frac{3}{22} a^{6} + \frac{5}{22} a^{5} - \frac{4}{11} a^{4} + \frac{3}{22} a^{3} - \frac{9}{22} a^{2} + \frac{9}{22} a + \frac{9}{22}$, $\frac{1}{22} a^{9} - \frac{1}{11} a^{7} - \frac{5}{22} a^{6} - \frac{5}{11} a^{5} - \frac{7}{22} a^{4} - \frac{4}{11} a^{3} - \frac{5}{22} a^{2} - \frac{5}{11} a + \frac{3}{22}$, $\frac{1}{242} a^{10} - \frac{5}{242} a^{9} - \frac{1}{242} a^{8} + \frac{17}{121} a^{7} - \frac{59}{242} a^{6} + \frac{37}{242} a^{5} + \frac{48}{121} a^{4} + \frac{19}{121} a^{3} + \frac{58}{121} a^{2} - \frac{15}{242} a + \frac{41}{121}$, $\frac{1}{242} a^{11} - \frac{2}{121} a^{9} - \frac{2}{121} a^{8} - \frac{43}{242} a^{7} + \frac{17}{242} a^{6} - \frac{52}{121} a^{5} - \frac{49}{121} a^{4} + \frac{31}{242} a^{3} + \frac{13}{121} a^{2} - \frac{13}{121} a - \frac{63}{242}$, $\frac{1}{484} a^{12} - \frac{1}{484} a^{10} - \frac{2}{121} a^{9} + \frac{9}{484} a^{8} - \frac{1}{242} a^{7} + \frac{71}{484} a^{6} - \frac{16}{121} a^{5} - \frac{9}{22} a^{4} + \frac{24}{121} a^{3} + \frac{7}{242} a^{2} + \frac{39}{121} a - \frac{73}{484}$, $\frac{1}{484} a^{13} - \frac{1}{484} a^{11} - \frac{9}{484} a^{9} - \frac{5}{242} a^{8} + \frac{57}{484} a^{7} + \frac{20}{121} a^{6} + \frac{30}{121} a^{5} - \frac{4}{121} a^{4} + \frac{71}{242} a^{3} + \frac{3}{242} a^{2} - \frac{171}{484} a + \frac{119}{242}$, $\frac{1}{8256895281847128865696} a^{14} - \frac{7}{8256895281847128865696} a^{13} - \frac{644810925229930059}{2064223820461782216424} a^{12} + \frac{15475462205518321507}{8256895281847128865696} a^{11} - \frac{1798659982489363167}{4128447640923564432848} a^{10} - \frac{123871803725690982311}{8256895281847128865696} a^{9} - \frac{67227789868516333303}{4128447640923564432848} a^{8} + \frac{19880592130999699961}{113108154545851080352} a^{7} - \frac{630394576115209221467}{8256895281847128865696} a^{6} - \frac{1939399610516699669109}{4128447640923564432848} a^{5} - \frac{740278853492737681029}{2064223820461782216424} a^{4} - \frac{65652248582025527283}{258027977557722777053} a^{3} - \frac{438621358442379738029}{8256895281847128865696} a^{2} + \frac{50059318336341155093}{750626843804284442336} a - \frac{362499595124309679827}{8256895281847128865696}$, $\frac{1}{284920685490698875768571872} a^{15} + \frac{8623}{142460342745349437884285936} a^{14} + \frac{59655195137744141405561}{284920685490698875768571872} a^{13} - \frac{137920198462400276061889}{284920685490698875768571872} a^{12} - \frac{378834548476766380800471}{284920685490698875768571872} a^{11} - \frac{44191358472543026839279}{25901880499154443251688352} a^{10} - \frac{272446905338540836747755}{25901880499154443251688352} a^{9} - \frac{111584386710626740835735}{25901880499154443251688352} a^{8} + \frac{974334877522835278621163}{12950940249577221625844176} a^{7} + \frac{6274393976726350689539157}{25901880499154443251688352} a^{6} + \frac{3625702554001707981616791}{12950940249577221625844176} a^{5} + \frac{22115760557076494972646767}{71230171372674718942142968} a^{4} + \frac{71795545293519050913016163}{284920685490698875768571872} a^{3} + \frac{25053407874880838695144531}{142460342745349437884285936} a^{2} - \frac{11831274644019819635393311}{35615085686337359471071484} a - \frac{112788745709609308439940439}{284920685490698875768571872}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13422288629500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||