Properties

Label 16.8.50678931106...2976.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{41}\cdot 7^{7}\cdot 23^{4}$
Root discriminant $30.31$
Ramified primes $2, 7, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1770

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 168, -118, -804, 692, 1244, -1319, -878, 1135, 344, -520, -96, 130, 20, -17, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 17*x^14 + 20*x^13 + 130*x^12 - 96*x^11 - 520*x^10 + 344*x^9 + 1135*x^8 - 878*x^7 - 1319*x^6 + 1244*x^5 + 692*x^4 - 804*x^3 - 118*x^2 + 168*x + 4)
 
gp: K = bnfinit(x^16 - 2*x^15 - 17*x^14 + 20*x^13 + 130*x^12 - 96*x^11 - 520*x^10 + 344*x^9 + 1135*x^8 - 878*x^7 - 1319*x^6 + 1244*x^5 + 692*x^4 - 804*x^3 - 118*x^2 + 168*x + 4, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 17 x^{14} + 20 x^{13} + 130 x^{12} - 96 x^{11} - 520 x^{10} + 344 x^{9} + 1135 x^{8} - 878 x^{7} - 1319 x^{6} + 1244 x^{5} + 692 x^{4} - 804 x^{3} - 118 x^{2} + 168 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(506789311061954423422976=2^{41}\cdot 7^{7}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{38} a^{14} + \frac{2}{19} a^{13} - \frac{3}{19} a^{12} + \frac{4}{19} a^{11} - \frac{5}{19} a^{10} + \frac{3}{19} a^{9} - \frac{6}{19} a^{8} + \frac{2}{19} a^{7} - \frac{15}{38} a^{6} + \frac{3}{19} a^{5} + \frac{7}{19} a^{4} - \frac{2}{19} a^{3} - \frac{4}{19} a^{2} - \frac{1}{19} a + \frac{6}{19}$, $\frac{1}{37719354009676} a^{15} - \frac{418675377145}{37719354009676} a^{14} - \frac{1753199762407}{18859677004838} a^{13} - \frac{602025537795}{9429838502419} a^{12} + \frac{996638965845}{9429838502419} a^{11} - \frac{16739635447}{9429838502419} a^{10} + \frac{4592727316550}{9429838502419} a^{9} + \frac{3756938285416}{9429838502419} a^{8} - \frac{12586097287109}{37719354009676} a^{7} + \frac{3694144746005}{37719354009676} a^{6} - \frac{8308118362877}{18859677004838} a^{5} - \frac{1355636884483}{9429838502419} a^{4} - \frac{738245542559}{18859677004838} a^{3} + \frac{7300692615419}{18859677004838} a^{2} + \frac{1189417587740}{9429838502419} a + \frac{2384485515726}{9429838502419}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10509828.4683 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1770:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 136 conjugacy class representatives for t16n1770 are not computed
Character table for t16n1770 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.10304.1, 8.4.11891310592.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.4.11.15$x^{4} + 30$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.8.24.53$x^{8} + 8 x + 14$$8$$1$$24$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.8.7.1$x^{8} + 14$$8$$1$$7$$D_{8}$$[\ ]_{8}^{2}$
$23$23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.8.0.1$x^{8} + x^{2} - 2 x + 5$$1$$8$$0$$C_8$$[\ ]^{8}$