Normalized defining polynomial
\( x^{16} - 5 x^{15} - 40 x^{14} + 307 x^{13} - 966 x^{12} - 1659 x^{11} + 40346 x^{10} - 135524 x^{9} - 23894 x^{8} + 1946502 x^{7} - 5668399 x^{6} + 3245050 x^{5} + 23736488 x^{4} - 77068202 x^{3} + 112248421 x^{2} - 90190604 x + 32715509 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(490237983424834767085031640625=5^{8}\cdot 439^{4}\cdot 2411^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 439, 2411$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{31} a^{13} - \frac{6}{31} a^{12} - \frac{11}{31} a^{11} - \frac{2}{31} a^{10} - \frac{1}{31} a^{9} - \frac{12}{31} a^{8} - \frac{4}{31} a^{7} + \frac{11}{31} a^{6} + \frac{11}{31} a^{5} - \frac{10}{31} a^{4} + \frac{10}{31} a^{3} - \frac{9}{31} a^{2} - \frac{13}{31} a$, $\frac{1}{31} a^{14} + \frac{15}{31} a^{12} - \frac{6}{31} a^{11} - \frac{13}{31} a^{10} + \frac{13}{31} a^{9} - \frac{14}{31} a^{8} - \frac{13}{31} a^{7} + \frac{15}{31} a^{6} - \frac{6}{31} a^{5} + \frac{12}{31} a^{4} - \frac{11}{31} a^{3} - \frac{5}{31} a^{2} + \frac{15}{31} a$, $\frac{1}{50080582386434037751890847282516038743153993027278986451} a^{15} - \frac{25290260966117037485566713865966527333922307279381081}{1615502657626904443609382170403743185263032033138031821} a^{14} - \frac{331321474558152862826153057489748338867503143456497901}{50080582386434037751890847282516038743153993027278986451} a^{13} - \frac{16506764680948901745570290008731959729647310766775026602}{50080582386434037751890847282516038743153993027278986451} a^{12} + \frac{24369705033135746438382505820140454878203521497216155377}{50080582386434037751890847282516038743153993027278986451} a^{11} - \frac{2831786131528564557190328590113783986905270162850109543}{50080582386434037751890847282516038743153993027278986451} a^{10} + \frac{11459929498680987389540438130686719734457967171565093980}{50080582386434037751890847282516038743153993027278986451} a^{9} - \frac{22685299595393795059416784139894636073092894894679207699}{50080582386434037751890847282516038743153993027278986451} a^{8} + \frac{354358902668797749859791672056155282051756285694263151}{50080582386434037751890847282516038743153993027278986451} a^{7} + \frac{871678871522953069683062570689708816269830930328238413}{50080582386434037751890847282516038743153993027278986451} a^{6} + \frac{8096602229299051846801061113214089257457989701653961597}{50080582386434037751890847282516038743153993027278986451} a^{5} + \frac{6747724260950942579201340983769575434485978618515348317}{50080582386434037751890847282516038743153993027278986451} a^{4} - \frac{4060069294186262068024787647645899326727085753164740755}{50080582386434037751890847282516038743153993027278986451} a^{3} - \frac{19646514298377128044462493453525102874951448570011438594}{50080582386434037751890847282516038743153993027278986451} a^{2} - \frac{17986479160254027934775389392664143106490458378019225406}{50080582386434037751890847282516038743153993027278986451} a + \frac{229183292823743638440301995724698850119551660791196217}{1615502657626904443609382170403743185263032033138031821}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 578154887.404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 77 conjugacy class representatives for t16n1869 are not computed |
| Character table for t16n1869 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.8.661518125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 439 | Data not computed | ||||||
| 2411 | Data not computed | ||||||