Normalized defining polynomial
\( x^{16} - 2 x^{15} - 3 x^{14} + 3 x^{13} + x^{12} + 5 x^{11} - 31 x^{10} + 6 x^{9} + 89 x^{8} + 6 x^{7} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(4885218876572265625\)
\(\medspace = 5^{10}\cdot 29^{8}\)
|
| |
| Root discriminant: | \(14.72\) |
| |
| Galois root discriminant: | $5^{3/4}29^{1/2}\approx 18.006383777357115$ | ||
| Ramified primes: |
\(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7}a^{13}+\frac{2}{7}a^{12}+\frac{1}{7}a^{11}-\frac{1}{7}a^{9}+\frac{2}{7}a^{8}+\frac{2}{7}a^{7}-\frac{2}{7}a^{6}-\frac{2}{7}a^{5}+\frac{1}{7}a^{4}-\frac{1}{7}a^{2}-\frac{2}{7}a-\frac{1}{7}$, $\frac{1}{471541}a^{14}-\frac{26170}{471541}a^{13}-\frac{130428}{471541}a^{12}+\frac{52319}{471541}a^{11}-\frac{204366}{471541}a^{10}+\frac{118056}{471541}a^{9}-\frac{222071}{471541}a^{8}+\frac{14487}{67363}a^{7}-\frac{19982}{471541}a^{6}+\frac{50693}{471541}a^{5}-\frac{137003}{471541}a^{4}-\frac{15044}{471541}a^{3}+\frac{139024}{471541}a^{2}-\frac{228259}{471541}a-\frac{67362}{471541}$, $\frac{1}{471541}a^{15}+\frac{15019}{471541}a^{13}-\frac{32594}{471541}a^{12}-\frac{34385}{471541}a^{11}+\frac{77858}{471541}a^{10}-\frac{98457}{471541}a^{9}-\frac{568}{11501}a^{8}+\frac{222889}{471541}a^{7}-\frac{141367}{471541}a^{6}-\frac{148115}{471541}a^{5}+\frac{2564}{15211}a^{4}+\frac{24897}{67363}a^{3}+\frac{225732}{471541}a^{2}+\frac{145448}{471541}a-\frac{15508}{67363}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{296689}{471541}a^{15}-\frac{571091}{471541}a^{14}-\frac{871877}{471541}a^{13}+\frac{711705}{471541}a^{12}+\frac{154254}{471541}a^{11}+\frac{235239}{67363}a^{10}-\frac{9035289}{471541}a^{9}+\frac{1455448}{471541}a^{8}+\frac{3526330}{67363}a^{7}+\frac{3739776}{471541}a^{6}-\frac{3532155}{471541}a^{5}+\frac{2148085}{471541}a^{4}-\frac{150140}{471541}a^{3}+\frac{806343}{471541}a^{2}-\frac{1034461}{471541}a-\frac{277252}{471541}$, $\frac{344595}{471541}a^{15}-\frac{687443}{471541}a^{14}-\frac{28592}{15211}a^{13}+\frac{692534}{471541}a^{12}+\frac{38453}{471541}a^{11}+\frac{2089077}{471541}a^{10}-\frac{10705528}{471541}a^{9}+\frac{2947594}{471541}a^{8}+\frac{25734445}{471541}a^{7}+\frac{4673643}{471541}a^{6}-\frac{7246}{471541}a^{5}+\frac{1738298}{471541}a^{4}-\frac{206016}{471541}a^{3}+\frac{1030524}{471541}a^{2}-\frac{635512}{471541}a-\frac{251651}{471541}$, $\frac{690}{15211}a^{15}-\frac{68381}{471541}a^{14}+\frac{34938}{471541}a^{13}+\frac{24621}{471541}a^{12}-\frac{9984}{67363}a^{11}+\frac{62178}{471541}a^{10}-\frac{906896}{471541}a^{9}+\frac{1364375}{471541}a^{8}+\frac{79865}{471541}a^{7}-\frac{658003}{471541}a^{6}+\frac{233439}{471541}a^{5}+\frac{262064}{67363}a^{4}+\frac{3418294}{471541}a^{3}-\frac{371218}{471541}a^{2}-\frac{196849}{471541}a+\frac{258204}{471541}$, $\frac{6414}{8897}a^{15}-\frac{12630}{8897}a^{14}-\frac{17823}{8897}a^{13}+\frac{14628}{8897}a^{12}+\frac{13}{31}a^{11}+\frac{35409}{8897}a^{10}-\frac{199090}{8897}a^{9}+\frac{44802}{8897}a^{8}+\frac{512825}{8897}a^{7}+\frac{87706}{8897}a^{6}-\frac{86138}{8897}a^{5}+\frac{5327}{1271}a^{4}+\frac{34505}{8897}a^{3}+\frac{20385}{8897}a^{2}-\frac{22230}{8897}a-\frac{87}{287}$, $\frac{355309}{471541}a^{15}-\frac{572510}{471541}a^{14}-\frac{173015}{67363}a^{13}+\frac{429913}{471541}a^{12}+\frac{336694}{471541}a^{11}+\frac{2106474}{471541}a^{10}-\frac{10192369}{471541}a^{9}-\frac{1343165}{471541}a^{8}+\frac{28605061}{471541}a^{7}+\frac{14171033}{471541}a^{6}+\frac{503075}{471541}a^{5}+\frac{2066457}{471541}a^{4}+\frac{748707}{471541}a^{3}+\frac{133025}{67363}a^{2}-\frac{787305}{471541}a-\frac{250870}{471541}$, $\frac{76448}{471541}a^{15}-\frac{92479}{471541}a^{14}-\frac{341709}{471541}a^{13}+\frac{45579}{471541}a^{12}+\frac{182632}{471541}a^{11}+\frac{497916}{471541}a^{10}-\frac{2034146}{471541}a^{9}-\frac{1452721}{471541}a^{8}+\frac{7027123}{471541}a^{7}+\frac{5291639}{471541}a^{6}-\frac{295627}{471541}a^{5}-\frac{1301172}{471541}a^{4}-\frac{844919}{471541}a^{3}+\frac{1492355}{471541}a^{2}+\frac{10685}{8897}a-\frac{129419}{471541}$, $\frac{10569}{471541}a^{15}-\frac{97267}{471541}a^{14}+\frac{37483}{67363}a^{13}-\frac{57755}{471541}a^{12}-\frac{504922}{471541}a^{11}+\frac{299024}{471541}a^{10}-\frac{695922}{471541}a^{9}+\frac{3346235}{471541}a^{8}-\frac{4201340}{471541}a^{7}-\frac{4343160}{471541}a^{6}+\frac{8994081}{471541}a^{5}+\frac{3068536}{471541}a^{4}-\frac{38903}{15211}a^{3}-\frac{158637}{67363}a^{2}-\frac{625669}{471541}a+\frac{14015}{11501}$, $\frac{20268}{471541}a^{15}-\frac{141579}{471541}a^{14}+\frac{216488}{471541}a^{13}+\frac{266638}{471541}a^{12}-\frac{552707}{471541}a^{11}-\frac{43629}{471541}a^{10}-\frac{1118273}{471541}a^{9}+\frac{3838715}{471541}a^{8}-\frac{763416}{471541}a^{7}-\frac{9721119}{471541}a^{6}+\frac{562313}{67363}a^{5}+\frac{8324644}{471541}a^{4}+\frac{3237707}{471541}a^{3}+\frac{228831}{471541}a^{2}-\frac{1863002}{471541}a-\frac{76918}{471541}$, $\frac{53402}{471541}a^{15}-\frac{95691}{471541}a^{14}-\frac{234747}{471541}a^{13}+\frac{248418}{471541}a^{12}+\frac{250430}{471541}a^{11}-\frac{37068}{471541}a^{10}-\frac{1654783}{471541}a^{9}-\frac{3419}{15211}a^{8}+\frac{6460924}{471541}a^{7}+\frac{22450}{15211}a^{6}-\frac{1077146}{67363}a^{5}+\frac{2254019}{471541}a^{4}+\frac{4718582}{471541}a^{3}-\frac{2455094}{471541}a^{2}-\frac{264763}{471541}a+\frac{528118}{471541}$, $\frac{3565}{15211}a^{15}-\frac{167175}{471541}a^{14}-\frac{65532}{67363}a^{13}+\frac{220849}{471541}a^{12}+\frac{39404}{67363}a^{11}+\frac{594220}{471541}a^{10}-\frac{3130812}{471541}a^{9}-\frac{1120670}{471541}a^{8}+\frac{10856977}{471541}a^{7}+\frac{4732223}{471541}a^{6}-\frac{3694702}{471541}a^{5}-\frac{188434}{67363}a^{4}+\frac{132546}{471541}a^{3}-\frac{18431}{67363}a^{2}-\frac{904070}{471541}a-\frac{220030}{471541}$
|
| |
| Regulator: | \( 1652.33200457 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 1652.33200457 \cdot 1}{2\cdot\sqrt{4885218876572265625}}\cr\approx \mathstrut & 0.149136774060 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), 4.4.725.1 x2, 4.4.4205.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.88410125.1, 8.4.2210253125.1, 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.4.88410125.1, 8.4.2210253125.1 |
| Degree 16 sibling: | 16.0.145220537353515625.1 |
| Minimal sibling: | 8.4.88410125.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.2.4.6a1.3 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 133 x + 31$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(29\)
| 29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |