Normalized defining polynomial
\( x^{16} - 2 x^{15} - 116 x^{14} + 177 x^{13} + 7745 x^{12} - 10421 x^{11} - 424462 x^{10} - 657538 x^{9} + 8943832 x^{8} + 23224335 x^{7} - 106230562 x^{6} - 311941107 x^{5} + 640011076 x^{4} + 1607965375 x^{3} - 1656703698 x^{2} - 2425324435 x + 1779444071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4880564680360454664521443587092657321=11^{12}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{15} - \frac{121824010434318920037722971921310557775052812026440774165696600110323356}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{14} - \frac{225296090067364423173907297573486028355077282919017598911138647378040266}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{13} - \frac{58348660270127396672969782515064667109106456817481444475075185645853250}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{12} - \frac{244094102105490103992974766011080133395917652559091354104537625197954554}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{11} - \frac{224595388462840495708066978278864990969352082987015546867247049376968632}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{10} - \frac{66331507242909737193514588867812857969448268423062399908254593537102690}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{9} + \frac{14863695820506267347367199227429655001675497385971300670293280794654987}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{8} + \frac{163905376613102636828578881800263244913291379915522045757693601657956049}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{7} - \frac{172699433408266011010189545185293628023771173696371558001816222343603317}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{6} - \frac{122431639060927341017754185268803650485122765914920703322360338827290028}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{5} + \frac{72037335479845838059582569047186991876615008389234489776644724026821613}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{4} - \frac{140780125444533059895712900632421313255390056034056677896327275461396283}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{3} - \frac{52657384748378036476207476016154544515238761626776013394411732170575612}{497780381670378618167911898911587624894480524954740209099692235097563929} a^{2} - \frac{193830127596217944597608649682990157189893759493387935078587460405000653}{497780381670378618167911898911587624894480524954740209099692235097563929} a + \frac{24408970402522528586702160455251280282844272516940374259894168906135}{228025827608968675294508428269165196928300744367723412322351000960863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2773762487010 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.2851397323891721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 41 | Data not computed | ||||||