Normalized defining polynomial
\( x^{16} - 4 x^{15} + 26 x^{14} - 120 x^{13} - 1788 x^{12} - 3032 x^{11} - 26294 x^{10} - 19168 x^{9} + 444742 x^{8} + 862764 x^{7} + 1268508 x^{6} - 236200 x^{5} - 15979773 x^{4} - 18086136 x^{3} + 6854770 x^{2} + 37596416 x + 26863609 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4877478719269533554834097045504=2^{32}\cdot 3^{12}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{245} a^{14} - \frac{8}{245} a^{13} - \frac{44}{245} a^{12} - \frac{108}{245} a^{11} - \frac{53}{245} a^{10} + \frac{111}{245} a^{9} - \frac{17}{245} a^{8} - \frac{6}{35} a^{7} + \frac{9}{245} a^{6} - \frac{43}{245} a^{5} - \frac{113}{245} a^{4} - \frac{82}{245} a^{3} - \frac{44}{245} a^{2} - \frac{26}{245} a + \frac{97}{245}$, $\frac{1}{3063607886050312933518547481298025612796884228799834772095} a^{15} - \frac{1928474611928607161515751550817605071307623818645023037}{3063607886050312933518547481298025612796884228799834772095} a^{14} - \frac{7378367531342212243456278641997632055722563846500804502}{3063607886050312933518547481298025612796884228799834772095} a^{13} + \frac{7742988321666601007356006749960545832529452986340462252}{62522609919394141500378520026490318628507841404078260655} a^{12} - \frac{8024627432024672166961082986083342434752463690230837901}{3063607886050312933518547481298025612796884228799834772095} a^{11} + \frac{415735912305253815448193575605318209213167142494759265493}{3063607886050312933518547481298025612796884228799834772095} a^{10} - \frac{914969339977618481856891432243120280470113941090161542461}{3063607886050312933518547481298025612796884228799834772095} a^{9} + \frac{1524421840152081413111070866142412338679479575619805174766}{3063607886050312933518547481298025612796884228799834772095} a^{8} + \frac{572457765765610263779023873518802860498455752749367966132}{3063607886050312933518547481298025612796884228799834772095} a^{7} - \frac{1431197146172918361903926526689854314213581064337905326684}{3063607886050312933518547481298025612796884228799834772095} a^{6} + \frac{1223654620731894521325058027771936324636648656737418189134}{3063607886050312933518547481298025612796884228799834772095} a^{5} - \frac{40636702884093286704202334388157236397733307288272033630}{87531653887151798100529928037086446079910977965709564917} a^{4} + \frac{716305773504724594223496780537638382375580788919478322574}{3063607886050312933518547481298025612796884228799834772095} a^{3} - \frac{2459667721705184090142094256145802840314066426854718313}{612721577210062586703709496259605122559376845759966954419} a^{2} - \frac{1337952225647971542915671866658214013890562275881207671499}{3063607886050312933518547481298025612796884228799834772095} a + \frac{984426466898956700645088982203770809593827134772567543182}{3063607886050312933518547481298025612796884228799834772095}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 483829365.463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||