Normalized defining polynomial
\( x^{16} - 4 x^{15} + 28 x^{14} + 248 x^{13} - 1540 x^{12} + 1496 x^{11} + 9172 x^{10} - 151076 x^{9} + 203518 x^{8} + 1537644 x^{7} - 1696040 x^{6} - 4482264 x^{5} - 11490419 x^{4} + 33646688 x^{3} + 91050580 x^{2} - 247607232 x + 123926857 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4877478719269533554834097045504=2^{32}\cdot 3^{12}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{831781307201052925873895766154953744013613969952231541420385} a^{15} + \frac{73058137103689007733062180847314614781906236790034823620}{166356261440210585174779153230990748802722793990446308284077} a^{14} + \frac{7586726475712510972827461953776374934813380099729717800134}{166356261440210585174779153230990748802722793990446308284077} a^{13} + \frac{79393013328629275241210443822442172281690454201429391235787}{831781307201052925873895766154953744013613969952231541420385} a^{12} + \frac{50979186414515600843813780477129558196815527904654633029011}{831781307201052925873895766154953744013613969952231541420385} a^{11} - \frac{60750902411918025930977509907777065937930626892296359875041}{166356261440210585174779153230990748802722793990446308284077} a^{10} + \frac{288324790632674552897174016719448169177297713046152418107619}{831781307201052925873895766154953744013613969952231541420385} a^{9} - \frac{24679397107848695086972033625379272228209750165834986693551}{831781307201052925873895766154953744013613969952231541420385} a^{8} - \frac{69679978254588110066931800936356010793701083865622242338789}{166356261440210585174779153230990748802722793990446308284077} a^{7} - \frac{213994257503619122492448560070083817973416790227362689025251}{831781307201052925873895766154953744013613969952231541420385} a^{6} - \frac{314165837471433582855815391527147512999621404415319831470959}{831781307201052925873895766154953744013613969952231541420385} a^{5} - \frac{217587950824293673274181070655479627653309967630471555176442}{831781307201052925873895766154953744013613969952231541420385} a^{4} - \frac{214590986521864685846045334493010823761711031487091072937299}{831781307201052925873895766154953744013613969952231541420385} a^{3} + \frac{333784460202164569554365659614315933557181239876298490631899}{831781307201052925873895766154953744013613969952231541420385} a^{2} - \frac{216474440733602517569535854936450372255353694626714346290838}{831781307201052925873895766154953744013613969952231541420385} a - \frac{183423181340495333780386832459167848819292813322687984841299}{831781307201052925873895766154953744013613969952231541420385}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 516599699.875 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||