Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 4 x^{13} - 819 x^{12} + 3624 x^{11} - 3718 x^{10} - 13616 x^{9} + 67535 x^{8} - 159212 x^{7} + 248706 x^{6} - 272904 x^{5} + 278674 x^{4} - 1059392 x^{3} + 980700 x^{2} + 1631112 x - 768484 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4814975858202960880562776047616=2^{32}\cdot 17^{4}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{82} a^{12} + \frac{9}{41} a^{11} - \frac{11}{41} a^{10} - \frac{1}{41} a^{9} + \frac{3}{82} a^{8} - \frac{7}{41} a^{7} - \frac{15}{41} a^{6} - \frac{15}{41} a^{5} - \frac{15}{82} a^{4} + \frac{13}{41} a^{3} - \frac{16}{41} a^{2} + \frac{13}{41} a - \frac{10}{41}$, $\frac{1}{82} a^{13} - \frac{9}{41} a^{11} - \frac{8}{41} a^{10} + \frac{39}{82} a^{9} + \frac{7}{41} a^{8} - \frac{12}{41} a^{7} + \frac{9}{41} a^{6} + \frac{33}{82} a^{5} - \frac{16}{41} a^{4} - \frac{4}{41} a^{3} + \frac{14}{41} a^{2} + \frac{2}{41} a + \frac{16}{41}$, $\frac{1}{1554310} a^{14} - \frac{744}{777155} a^{13} + \frac{1203}{777155} a^{12} - \frac{177836}{777155} a^{11} + \frac{551817}{1554310} a^{10} + \frac{44581}{777155} a^{9} - \frac{125938}{777155} a^{8} - \frac{12592}{777155} a^{7} - \frac{488561}{1554310} a^{6} - \frac{14188}{777155} a^{5} - \frac{63360}{155431} a^{4} - \frac{12045}{155431} a^{3} - \frac{4678}{18955} a^{2} + \frac{184434}{777155} a + \frac{54657}{777155}$, $\frac{1}{566478141745794778518912169432869000050} a^{15} - \frac{7092997015056075982891871463031}{40462724410413912751350869245204928575} a^{14} + \frac{1594068357546123597741125730000859179}{566478141745794778518912169432869000050} a^{13} + \frac{1606546835457550873135459352587095461}{283239070872897389259456084716434500025} a^{12} + \frac{89362808272551236044837349029584374999}{566478141745794778518912169432869000050} a^{11} - \frac{134054707446684338436961533660609358}{1381654004258036045168078462031387805} a^{10} - \frac{129771404715375325769046619182928343633}{566478141745794778518912169432869000050} a^{9} - \frac{80852697502769516512849268317310420039}{283239070872897389259456084716434500025} a^{8} - \frac{32344956409918005870607723069945939561}{80925448820827825502701738490409857150} a^{7} + \frac{27537120269146358820993051984310733588}{56647814174579477851891216943286900005} a^{6} - \frac{199951596612314286652152569951871077739}{566478141745794778518912169432869000050} a^{5} - \frac{21061796348949526614931034781294741863}{56647814174579477851891216943286900005} a^{4} - \frac{47850617473328012837830523105052628448}{283239070872897389259456084716434500025} a^{3} - \frac{111158095661175047432111785578723169623}{283239070872897389259456084716434500025} a^{2} - \frac{90545545280905634655484939979209443122}{283239070872897389259456084716434500025} a + \frac{341468215456974973510131875683808338}{283239070872897389259456084716434500025}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 852070145.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T305):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{82}) \), 4.4.13448.1 x2, 4.4.2624.1 x2, \(\Q(\sqrt{2}, \sqrt{41})\), 8.8.11574317056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |