Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 598 x^{12} + 4134 x^{11} - 8498 x^{10} + 3880 x^{9} + 69102 x^{8} - 253070 x^{7} + 339220 x^{6} - 162276 x^{5} - 97045 x^{4} + 184874 x^{3} - 113712 x^{2} + 34036 x - 4157 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4734759874359678578687627415368937=3^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{3} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{36} a^{8} + \frac{1}{18} a^{7} - \frac{1}{18} a^{6} + \frac{1}{18} a^{5} - \frac{1}{18} a^{4} + \frac{2}{9} a^{3} - \frac{17}{36} a^{2} - \frac{1}{9} a - \frac{17}{36}$, $\frac{1}{36} a^{9} + \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{4}{9}$, $\frac{1}{108} a^{10} + \frac{1}{108} a^{9} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{1}{36} a^{4} - \frac{1}{4} a^{3} - \frac{1}{12} a^{2} - \frac{35}{108} a - \frac{7}{54}$, $\frac{1}{108} a^{11} - \frac{1}{108} a^{9} + \frac{1}{18} a^{7} - \frac{1}{36} a^{5} - \frac{1}{18} a^{4} + \frac{5}{18} a^{3} + \frac{4}{27} a^{2} - \frac{1}{36} a - \frac{17}{54}$, $\frac{1}{432} a^{12} - \frac{1}{216} a^{11} + \frac{1}{144} a^{9} + \frac{1}{144} a^{8} - \frac{1}{18} a^{7} - \frac{1}{48} a^{6} + \frac{1}{36} a^{5} - \frac{7}{144} a^{4} + \frac{103}{432} a^{3} + \frac{187}{432} a^{2} - \frac{23}{144} a + \frac{71}{144}$, $\frac{1}{432} a^{13} - \frac{1}{432} a^{10} + \frac{1}{432} a^{9} - \frac{1}{72} a^{8} + \frac{5}{144} a^{7} + \frac{1}{24} a^{6} + \frac{5}{144} a^{5} + \frac{1}{432} a^{4} + \frac{71}{144} a^{3} - \frac{5}{144} a^{2} + \frac{155}{432} a - \frac{1}{216}$, $\frac{1}{47551353264} a^{14} - \frac{7}{47551353264} a^{13} + \frac{13533235}{47551353264} a^{12} - \frac{81199319}{47551353264} a^{11} + \frac{41866103}{11887838316} a^{10} - \frac{5812196}{2971959579} a^{9} - \frac{90359759}{7925225544} a^{8} + \frac{611137603}{15850451088} a^{7} - \frac{176098643}{7925225544} a^{6} - \frac{686139155}{11887838316} a^{5} - \frac{3763251109}{47551353264} a^{4} + \frac{13979139031}{47551353264} a^{3} - \frac{12803114987}{47551353264} a^{2} + \frac{2545159051}{23775676632} a - \frac{16742134415}{47551353264}$, $\frac{1}{47551353264} a^{15} + \frac{2255531}{7925225544} a^{13} + \frac{6766663}{23775676632} a^{12} + \frac{13119829}{15850451088} a^{11} + \frac{16556261}{3962612772} a^{10} + \frac{63873209}{23775676632} a^{9} - \frac{71202905}{5283483696} a^{8} - \frac{159045715}{5283483696} a^{7} - \frac{1107737041}{23775676632} a^{6} + \frac{235711123}{5283483696} a^{5} + \frac{290569363}{3962612772} a^{4} - \frac{5025924149}{23775676632} a^{3} - \frac{6896464049}{15850451088} a^{2} - \frac{1481764675}{15850451088} a + \frac{10929538723}{47551353264}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 111926804231 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.894839280046857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 73 | Data not computed | ||||||