Normalized defining polynomial
\( x^{16} - 48 x^{14} - 64 x^{13} - 3408 x^{12} + 7200 x^{11} + 53536 x^{10} - 108272 x^{9} + 3455620 x^{8} - 2300608 x^{7} + 4685344 x^{6} + 24897568 x^{5} - 434348320 x^{4} - 451978368 x^{3} - 1755236576 x^{2} - 1566486560 x + 11378288956 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(467063129754478147962797661051173208064=2^{62}\cdot 17^{6}\cdot 127^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $261.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{233172} a^{14} - \frac{299}{116586} a^{13} - \frac{431}{25908} a^{12} - \frac{2038}{19431} a^{11} - \frac{2947}{77724} a^{10} - \frac{10}{153} a^{9} - \frac{10946}{58293} a^{8} + \frac{545}{19431} a^{7} - \frac{5782}{19431} a^{6} - \frac{25552}{58293} a^{5} + \frac{46039}{116586} a^{4} + \frac{1886}{19431} a^{3} + \frac{407}{38862} a^{2} - \frac{761}{19431} a - \frac{1154}{58293}$, $\frac{1}{15601094825693534741050225301428281880181960446866443122030142268} a^{15} + \frac{444870154904907166570196971301362155299737346793947674873}{213713627749226503302057880841483313427150143107759494822330716} a^{14} - \frac{127634651348041524112917334712667964608603048258348731510785220}{3900273706423383685262556325357070470045490111716610780507535567} a^{13} + \frac{43529405804231189698766576073413734416519145225684384675674332}{1300091235474461228420852108452356823348496703905536926835845189} a^{12} + \frac{42472249775475750220595549635873246230055762872750747994659811}{1733454980632614971227802811269809097797995605207382569114460252} a^{11} - \frac{22325250211842749655686456949051193411705550502368584521378845}{288909163438769161871300468544968182966332600867897094852410042} a^{10} - \frac{431840034276611160693528244372825831213084204663056209832797633}{15601094825693534741050225301428281880181960446866443122030142268} a^{9} + \frac{1789850131352902053350960627057862631760019331267469744645019439}{7800547412846767370525112650714140940090980223433221561015071134} a^{8} - \frac{44972523681936849096147441224577422333388887656668639352477569}{96303054479589720623766822848322727655444200289299031617470014} a^{7} - \frac{1895142996201955629350575520978849797886673547347442036705807949}{7800547412846767370525112650714140940090980223433221561015071134} a^{6} - \frac{13788226705101835372089931750881387887574821940740291204399135}{152951910055818968049512012759100802746881965165357285510099434} a^{5} + \frac{1112154448605954117826577670260965307331485642986994862309423217}{3900273706423383685262556325357070470045490111716610780507535567} a^{4} - \frac{318942311646297244965073117824816054099380590692590800772190413}{2600182470948922456841704216904713646696993407811073853671690378} a^{3} - \frac{69501106859086081439706652406799172919975593285319072450135237}{433363745158153742806950702817452274449498901301845642278615063} a^{2} - \frac{567929917769598235573755437949856138236935485868581858412013589}{7800547412846767370525112650714140940090980223433221561015071134} a + \frac{5428835565542061459570242044843668953938840027956894068360162}{53428406937306625825514470210370828356787535776939873705582679}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25357801738500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4421632.2, \(\Q(\zeta_{16})^+\), 4.4.2210816.1, 8.8.312813272694784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |