Normalized defining polynomial
\( x^{16} + 224 x^{14} - 600 x^{13} + 4207 x^{12} - 103570 x^{11} - 894128 x^{10} + 985700 x^{9} - 14651525 x^{8} + 231449980 x^{7} - 174611312 x^{6} - 4945685100 x^{5} + 31494302817 x^{4} - 20861377640 x^{3} - 317010550824 x^{2} + 708955723270 x - 378475414519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(467052717980688838758400000000000000=2^{24}\cdot 5^{14}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{15} + \frac{3735256407856042114860902104216121358875117532562377376584203785578082581609035790480283844}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{14} - \frac{2824752950251263921934222615420085353911705883150767125608335541048522536054927144701876059}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{13} + \frac{109411944243734053618905373508109069598219909421504328269505700206140761661013096143919367}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{12} + \frac{867633362965990532249917578172935416825023566917191179267001530227473828711178687985532303}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{11} + \frac{5344866393080177663616034826335329534624270241617007780886603867559344941199727268143104633}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{10} + \frac{1158897220144140438066168108138047895805252036871858249490176652645260826440502056957564925}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{9} - \frac{5244812831796227572528778865184431963524217270170072181895166658141825170118249344472403504}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{8} - \frac{3347567575565424172547455754460077660403726561375296047879102733010173837206397077057309314}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{7} - \frac{6370823562016117821663197446665186234628353472120662666122252380071851620874279466368250}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{6} + \frac{6281062131823439634114568153905635731497351326516039700370435601049438176265081657526667055}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{5} + \frac{745336190201861349309618834012558397235776782210367610374154417270765421370819696372768186}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{4} - \frac{1756791609451885623103639423567428980877949367073319041381949869904078866211383862459044641}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{3} - \frac{5302682415397562680000301525261797422298128653804208933726803185674386979775499454219515583}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a^{2} + \frac{2387511969502820106015985185819613979727641541145998675935676514706659197731017890127402578}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689} a - \frac{2169623479547858447357784491902959260438281678889540365216214324402276764567953315556269358}{13310953848668968397371318816648732693168654800988985049375919552621922362818937093161960689}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181820471720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |