Normalized defining polynomial
\( x^{16} - 6 x^{15} - 84 x^{14} + 486 x^{13} - 10012 x^{12} + 27414 x^{11} + 141964 x^{10} - 1018792 x^{9} + 13800238 x^{8} - 27974016 x^{7} + 129179506 x^{6} + 191867768 x^{5} - 1406195937 x^{4} + 6851881008 x^{3} - 15160486496 x^{2} + 7365907158 x + 3809588801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(467052717980688838758400000000000000=2^{24}\cdot 5^{14}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{15} - \frac{1041825879215354574196994506873140538449243841585653299150816778947903610986876324}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{14} + \frac{870332756409111080595657387151713851317217949360023459755962754792174557981730311}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{13} - \frac{921892053035259993610723692995568390603662612469517930199621191697919051409613990}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{12} - \frac{165705888461591788351546067785306410324031437743196320421051707800096512897697913}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{11} - \frac{67980829685192149657945905491381253406605698196738330060284259891015372236985635}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{10} + \frac{51094790233776949391340873368735615249886295263485522287377463553609065253155403}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{9} - \frac{796952524708172118103568647119772904264338708414154804496522128179987954890143275}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{8} - \frac{4187419489052309225817704172164606511560230745946108919582542336849709139550382}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{7} + \frac{356889403270704787664510353649413895091709559064162628168783772423214030455903206}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{6} + \frac{189930948846498026607291073019012265503096348624376687072322776310806649067559635}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{5} - \frac{323878468639378391676117034679329144421535459630082085982465029671589453886884225}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{4} + \frac{444326408524026410761245307483288290225042182394605134668599117496948987500987916}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{3} - \frac{738619038069636845876615787046342643518949455336900551952728207760261960472510704}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a^{2} + \frac{515417195611870766186274242456136628715835129084330547356173738095616087813054653}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981} a - \frac{60820304180236096437288790570892248227389172395779903346688950350816700421731055}{2393410948522979979528233589867174121114497656597299129887624548135681959346083981}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 196656781493 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |