Normalized defining polynomial
\( x^{16} - 6 x^{15} + 76 x^{14} - 324 x^{13} - 10157 x^{12} + 32504 x^{11} + 248404 x^{10} - 91542 x^{9} - 5379957 x^{8} - 9218806 x^{7} + 168371486 x^{6} + 78373888 x^{5} - 1989121957 x^{4} - 3989723662 x^{3} + 869375994 x^{2} + 49830668338 x + 63700077901 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(467052717980688838758400000000000000=2^{24}\cdot 5^{14}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{15} + \frac{6318504421098891043523982365039934256609050391882680182823336765592480386096418697}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{14} - \frac{4420333156356904591118121371732645011852197981698821537430789229163264163310501565}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{13} + \frac{6250782488211657662026921243313718682992096682401666850354986113030048839452514682}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{12} - \frac{2905733941774983517596828299061427696412612973849041222899371005283662736761321823}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{11} + \frac{5028725958591000023679560244257506994992499782571342293775484108140096358398126550}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{10} + \frac{4601026782279330415433671765821897472978461419340739309135929524148081582180624604}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{9} + \frac{2973756715702768114767181236748344475224636962427974585322045004644971831378153152}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{8} - \frac{330919216868132704184479532552860711124496607036282860624580046258031063077776628}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{7} - \frac{5907180270928861566768555109144377141723394861987964018302587001600634870738619734}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{6} + \frac{1316214844411422188974280020168148271121474006612328247802161262408381409997145427}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{5} - \frac{4411585938287426691568119876734111946033001214897216913502207786585758868781125321}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{4} - \frac{5060323617681711475930190331772717986652741166547442540546254852601141239233532663}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{3} + \frac{888292738275450414307229634156886344162949295573430088842464430883715886530971320}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a^{2} - \frac{3758756777545847740835435676790484129222971443926348021080397150338320137926395721}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921} a - \frac{1856279830908604131701064929047664656671423210605781607740078198762248775505051780}{12763225191744047212720469135571886243124553799920501954714752684159040223720787921}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 207398901381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |