Normalized defining polynomial
\( x^{16} + 20 x^{14} - 24 x^{13} - 170 x^{12} + 456 x^{11} - 1888 x^{10} + 1044 x^{9} + 3145 x^{8} + 2592 x^{7} + 7580 x^{6} - 29244 x^{5} + 15796 x^{4} + 25776 x^{3} - 44728 x^{2} + 9636 x - 503 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(459191708201416736032948224=2^{40}\cdot 3^{12}\cdot 17^{4}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{2}{9} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{901809} a^{14} - \frac{18998}{901809} a^{13} - \frac{3980}{100201} a^{12} + \frac{34622}{300603} a^{11} + \frac{10787}{100201} a^{10} + \frac{6670}{300603} a^{9} - \frac{58234}{901809} a^{8} + \frac{151874}{901809} a^{7} - \frac{125306}{300603} a^{6} + \frac{6100}{300603} a^{5} + \frac{89114}{300603} a^{4} + \frac{101159}{300603} a^{3} + \frac{74554}{901809} a^{2} + \frac{187141}{901809} a - \frac{46952}{100201}$, $\frac{1}{584817641946841020205822284771} a^{15} + \frac{270484567404749211621725}{584817641946841020205822284771} a^{14} - \frac{8294340572262155960172899203}{584817641946841020205822284771} a^{13} - \frac{14580391503501220444117545007}{584817641946841020205822284771} a^{12} + \frac{6264192908926252571596066349}{64979737994093446689535809419} a^{11} + \frac{8672927790597030476674151308}{194939213982280340068607428257} a^{10} - \frac{71484505417593659259833487031}{584817641946841020205822284771} a^{9} + \frac{56513958646744450643838954022}{584817641946841020205822284771} a^{8} - \frac{166814813835298692247758456497}{584817641946841020205822284771} a^{7} - \frac{229348465656828604758946455620}{584817641946841020205822284771} a^{6} + \frac{20709803479690840303217485721}{64979737994093446689535809419} a^{5} - \frac{9679013120046767996129533324}{64979737994093446689535809419} a^{4} - \frac{272394803058607194763947138425}{584817641946841020205822284771} a^{3} + \frac{157931951815297303277706936896}{584817641946841020205822284771} a^{2} - \frac{187684009180538099524567598215}{584817641946841020205822284771} a + \frac{252994170107472567026686048073}{584817641946841020205822284771}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21264663.1427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T595):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||