Properties

Label 16.8.45453408428...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 37^{6}$
Root discriminant $30.10$
Ramified primes $2, 5, 11, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1605

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-529, 4554, -9497, 87, 16930, -10232, -8137, 7165, 543, -1498, 585, 73, -70, 34, -6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 6*x^14 + 34*x^13 - 70*x^12 + 73*x^11 + 585*x^10 - 1498*x^9 + 543*x^8 + 7165*x^7 - 8137*x^6 - 10232*x^5 + 16930*x^4 + 87*x^3 - 9497*x^2 + 4554*x - 529)
 
gp: K = bnfinit(x^16 - 4*x^15 - 6*x^14 + 34*x^13 - 70*x^12 + 73*x^11 + 585*x^10 - 1498*x^9 + 543*x^8 + 7165*x^7 - 8137*x^6 - 10232*x^5 + 16930*x^4 + 87*x^3 - 9497*x^2 + 4554*x - 529, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 6 x^{14} + 34 x^{13} - 70 x^{12} + 73 x^{11} + 585 x^{10} - 1498 x^{9} + 543 x^{8} + 7165 x^{7} - 8137 x^{6} - 10232 x^{5} + 16930 x^{4} + 87 x^{3} - 9497 x^{2} + 4554 x - 529 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(454534084285444900000000=2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 37^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{138} a^{14} + \frac{5}{138} a^{13} - \frac{7}{138} a^{12} + \frac{17}{138} a^{11} + \frac{10}{23} a^{10} - \frac{31}{138} a^{9} - \frac{13}{46} a^{8} - \frac{3}{46} a^{7} + \frac{8}{23} a^{6} - \frac{31}{69} a^{5} - \frac{1}{138} a^{4} - \frac{1}{23} a^{3} + \frac{17}{138} a^{2} + \frac{11}{46} a - \frac{1}{3}$, $\frac{1}{3272079108038050461569286} a^{15} - \frac{154362457065844333096}{1636039554019025230784643} a^{14} + \frac{170683197357344158058871}{1090693036012683487189762} a^{13} - \frac{91043059197269071487851}{545346518006341743594881} a^{12} + \frac{102198544508676842535737}{1636039554019025230784643} a^{11} + \frac{510864939744536547925541}{3272079108038050461569286} a^{10} - \frac{299009623519451283016768}{1636039554019025230784643} a^{9} + \frac{287105494014317984174611}{1090693036012683487189762} a^{8} + \frac{286379618290988566398137}{1090693036012683487189762} a^{7} + \frac{1191881796189559615323097}{3272079108038050461569286} a^{6} - \frac{764612385700510749332104}{1636039554019025230784643} a^{5} - \frac{55232287959024675796739}{148730868547184111889513} a^{4} + \frac{1523590152598899631080407}{3272079108038050461569286} a^{3} - \frac{3462193806183461727931}{1636039554019025230784643} a^{2} + \frac{25754278536427366701998}{71132154522566314381941} a - \frac{705224701092185310772}{3092702370546361494867}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 762079.163424 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1605:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 124 conjugacy class representatives for t16n1605 are not computed
Character table for t16n1605 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.103530625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.5$x^{8} + 2 x^{7} + 8 x^{2} + 16$$2$$4$$8$$C_8:C_2$$[2, 2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
5Data not computed
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$37$37.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.8.6.1$x^{8} - 1147 x^{4} + 855625$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$