Normalized defining polynomial
\( x^{16} - 2 x^{15} - 229 x^{14} + 762 x^{13} + 9237 x^{12} - 49786 x^{11} + 477071 x^{10} - 2101004 x^{9} - 3133551 x^{8} + 22939648 x^{7} - 192051301 x^{6} + 441290118 x^{5} - 234692115 x^{4} + 4703434420 x^{3} + 5421674073 x^{2} + 22716955742 x + 46303919009 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4418526734163451705398425526403072=2^{16}\cdot 43^{5}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{991007} a^{14} - \frac{150571}{991007} a^{13} - \frac{121794}{991007} a^{12} - \frac{15134}{991007} a^{11} + \frac{301167}{991007} a^{10} - \frac{429126}{991007} a^{9} + \frac{29569}{991007} a^{8} - \frac{354914}{991007} a^{7} + \frac{241600}{991007} a^{6} + \frac{71532}{991007} a^{5} - \frac{109549}{991007} a^{4} - \frac{217423}{991007} a^{3} - \frac{433350}{991007} a^{2} + \frac{490535}{991007} a - \frac{54091}{991007}$, $\frac{1}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{15} - \frac{217359081955840935709196496148771480244895489782653381855334377470540947}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{14} + \frac{105348364795857782195865880238767844587236642827139007124034091638990788647310}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{13} - \frac{201270072139059576106679760411148271952209375247208972335516442156036692262010}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{12} - \frac{112137444894679491829806361566681977046803619779600819828354745914041229108582}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{11} - \frac{105617640871125026263152005199833424055910006632866303737288101796197131036456}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{10} + \frac{555841635896178138504452614162573583544606638630172477873002293702321643546776}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{9} - \frac{520751572556160356333946040566192387809810994260824996235918659022705540290172}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{8} - \frac{107185256581740721697135430661274884723655378063742159618882409091865539395501}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{7} - \frac{6409707346569429030457471807499735547917533129703545854887438469935111288507}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{6} - \frac{37333898873771350348780994408708367433237988429296425544197359333193110501436}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{5} - \frac{449934896631047315432370571935431432560338830969084989230098189535849772784967}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{4} + \frac{411769029812355655329613391530637956440255234696885796612864989487949030741478}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{3} + \frac{556979976947660881812555646522499153182235407497284342273008763816574459418559}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a^{2} + \frac{275033242691367645566397555213390794636090855636007532556834682120990029267121}{1297542316392628743764522238211218351182190076243342186499602091645655723968383} a + \frac{240776415350386641670606162113506994271166635250650117079327561659078146565426}{1297542316392628743764522238211218351182190076243342186499602091645655723968383}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72865649816.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 116 conjugacy class representatives for t16n1851 are not computed |
| Character table for t16n1851 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.18 | $x^{12} + 80 x^{10} + 81 x^{8} - 160 x^{6} - 117 x^{4} + 80 x^{2} + 227$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||