Normalized defining polynomial
\( x^{16} - 8 x^{15} - 4 x^{14} + 86 x^{13} - 3229 x^{12} + 22238 x^{11} - 101440 x^{10} + 213107 x^{9} + 2019758 x^{8} - 11819846 x^{7} + 63839077 x^{6} - 134418294 x^{5} + 322248046 x^{4} - 455135461 x^{3} - 469772490 x^{2} + 689350461 x + 431493817 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4411897179443060791351047777488896=2^{12}\cdot 41^{14}\cdot 73^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{15} + \frac{52618223562355534639567951066372861086915300563579435107104579936524}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{14} - \frac{2871793813131015395274280301250790239887918633333948889566794636812}{213554220770385104504218042836909631413809478671555406071636446661141} a^{13} + \frac{22765874755292626180671791749075748585794870408576983387917289973289}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{12} - \frac{266400573753264560441042047796933983433041997105717721310184159649049}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{11} + \frac{250886580918312903369257781147336835608128416007397151181083474989942}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{10} - \frac{296595830131973587272229419186018434422433668086493904735091045790577}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{9} - \frac{130511066635428017137996106555166477859822371182605137805044926502134}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{8} + \frac{25468036469394593665369023845591126875637665872239084656990130547329}{213554220770385104504218042836909631413809478671555406071636446661141} a^{7} + \frac{103363857951367669870604910230644590950662937435049385269591182251581}{213554220770385104504218042836909631413809478671555406071636446661141} a^{6} + \frac{192158160083839449944983909248696872833333306844271659234478491630751}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{5} - \frac{150536041023690065330875391203704277195224611552269285093200338775586}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{4} + \frac{239647141492227099718161038783440864894969761294762380129617677863319}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{3} + \frac{169685916424931261494274690783568012677336499172169766424698624677496}{1067771103851925522521090214184548157069047393357777030358182233305705} a^{2} - \frac{90793989983768941578406180072547305325700059943621677985588321904953}{1067771103851925522521090214184548157069047393357777030358182233305705} a + \frac{231193440972258102250072950118854582848165175772848311959298398668346}{1067771103851925522521090214184548157069047393357777030358182233305705}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65042665241.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T209):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.13448.1, 4.4.68921.1, 4.4.551368.1, 8.8.304006671424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 41 | Data not computed | ||||||
| $73$ | 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |