Normalized defining polynomial
\( x^{16} - 3 x^{15} - 14 x^{14} + 50 x^{13} + 66 x^{12} - 319 x^{11} - 105 x^{10} + 986 x^{9} + 17 x^{8} - 1603 x^{7} - 275 x^{6} + 1653 x^{5} + 1156 x^{4} - 1655 x^{3} - 901 x^{2} + 1146 x - 199 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4398833596213134765625=5^{12}\cdot 53^{2}\cdot 283^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53, 283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3041} a^{13} + \frac{117}{3041} a^{12} + \frac{916}{3041} a^{11} + \frac{1182}{3041} a^{10} - \frac{1267}{3041} a^{9} - \frac{900}{3041} a^{8} - \frac{710}{3041} a^{7} + \frac{505}{3041} a^{6} + \frac{797}{3041} a^{5} - \frac{1145}{3041} a^{4} + \frac{972}{3041} a^{3} + \frac{1450}{3041} a^{2} + \frac{292}{3041} a + \frac{888}{3041}$, $\frac{1}{3041} a^{14} - \frac{609}{3041} a^{12} + \frac{445}{3041} a^{11} + \frac{325}{3041} a^{10} + \frac{1371}{3041} a^{9} + \frac{1196}{3041} a^{8} + \frac{1468}{3041} a^{7} - \frac{509}{3041} a^{6} - \frac{123}{3041} a^{5} + \frac{1133}{3041} a^{4} + \frac{243}{3041} a^{3} + \frac{938}{3041} a^{2} + \frac{175}{3041} a - \frac{502}{3041}$, $\frac{1}{88189} a^{15} + \frac{3}{88189} a^{14} + \frac{4}{88189} a^{13} + \frac{24724}{88189} a^{12} + \frac{34034}{88189} a^{11} + \frac{30523}{88189} a^{10} + \frac{40585}{88189} a^{9} - \frac{32715}{88189} a^{8} + \frac{18733}{88189} a^{7} - \frac{17472}{88189} a^{6} - \frac{3317}{88189} a^{5} - \frac{38346}{88189} a^{4} + \frac{31877}{88189} a^{3} - \frac{14379}{88189} a^{2} + \frac{26969}{88189} a + \frac{41073}{88189}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53213.8660037 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 40 conjugacy class representatives for t16n1046 |
| Character table for t16n1046 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.283.1, 8.4.50055625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 283 | Data not computed | ||||||