Normalized defining polynomial
\( x^{16} - 137 x^{14} + 2120 x^{12} + 225613 x^{10} - 2409767 x^{8} - 86396905 x^{6} + 63138950 x^{4} + \cdots + 3379364677 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(43843732772164778616036288947079464176386048\)
\(\medspace = 2^{16}\cdot 3^{8}\cdot 13^{9}\cdot 1327^{8}\)
|
| |
| Root discriminant: | \(534.10\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(13\), \(1327\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{6}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{7}-\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{9}a^{12}+\frac{1}{9}a^{6}+\frac{1}{3}a^{4}+\frac{2}{9}$, $\frac{1}{9}a^{13}+\frac{1}{9}a^{7}+\frac{1}{3}a^{5}+\frac{2}{9}a$, $\frac{1}{18\cdots 47}a^{14}-\frac{68\cdots 05}{18\cdots 47}a^{12}+\frac{93\cdots 58}{61\cdots 49}a^{10}-\frac{84\cdots 31}{18\cdots 47}a^{8}-\frac{30\cdots 57}{18\cdots 47}a^{6}-\frac{15\cdots 80}{20\cdots 83}a^{4}+\frac{20\cdots 24}{18\cdots 47}a^{2}+\frac{50\cdots 22}{18\cdots 47}$, $\frac{1}{29\cdots 81}a^{15}+\frac{97\cdots 95}{99\cdots 27}a^{13}-\frac{60\cdots 09}{99\cdots 27}a^{11}-\frac{79\cdots 88}{29\cdots 81}a^{9}+\frac{47\cdots 56}{99\cdots 27}a^{7}-\frac{49\cdots 72}{99\cdots 27}a^{5}-\frac{60\cdots 35}{29\cdots 81}a^{3}-\frac{37\cdots 91}{99\cdots 27}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{96}$, which has order $96$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{96}$, which has order $1536$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{67\cdots 44}{20\cdots 83}a^{14}-\frac{25\cdots 26}{61\cdots 49}a^{12}+\frac{10\cdots 93}{61\cdots 49}a^{10}+\frac{54\cdots 12}{61\cdots 49}a^{8}-\frac{47\cdots 21}{20\cdots 83}a^{6}-\frac{25\cdots 49}{61\cdots 49}a^{4}-\frac{37\cdots 07}{61\cdots 49}a^{2}+\frac{10\cdots 71}{61\cdots 49}$, $\frac{67\cdots 44}{20\cdots 83}a^{14}-\frac{25\cdots 26}{61\cdots 49}a^{12}+\frac{10\cdots 93}{61\cdots 49}a^{10}+\frac{54\cdots 12}{61\cdots 49}a^{8}-\frac{47\cdots 21}{20\cdots 83}a^{6}-\frac{25\cdots 49}{61\cdots 49}a^{4}-\frac{37\cdots 07}{61\cdots 49}a^{2}+\frac{16\cdots 20}{61\cdots 49}$, $\frac{10\cdots 32}{61\cdots 49}a^{14}-\frac{14\cdots 39}{61\cdots 49}a^{12}+\frac{22\cdots 79}{61\cdots 49}a^{10}+\frac{24\cdots 31}{61\cdots 49}a^{8}-\frac{86\cdots 20}{20\cdots 83}a^{6}-\frac{31\cdots 67}{20\cdots 83}a^{4}+\frac{21\cdots 66}{20\cdots 83}a^{2}+\frac{35\cdots 63}{61\cdots 49}$, $\frac{26\cdots 63}{61\cdots 49}a^{14}-\frac{10\cdots 18}{18\cdots 47}a^{12}+\frac{15\cdots 88}{20\cdots 83}a^{10}+\frac{17\cdots 01}{20\cdots 83}a^{8}-\frac{38\cdots 01}{18\cdots 47}a^{6}-\frac{17\cdots 29}{61\cdots 49}a^{4}-\frac{11\cdots 58}{61\cdots 49}a^{2}-\frac{27\cdots 75}{18\cdots 47}$, $\frac{22\cdots 37}{18\cdots 47}a^{14}-\frac{11\cdots 62}{61\cdots 49}a^{12}+\frac{34\cdots 67}{61\cdots 49}a^{10}+\frac{35\cdots 15}{18\cdots 47}a^{8}-\frac{36\cdots 90}{61\cdots 49}a^{6}-\frac{93\cdots 58}{61\cdots 49}a^{4}+\frac{54\cdots 48}{18\cdots 47}a^{2}+\frac{20\cdots 63}{61\cdots 49}$, $\frac{76\cdots 36}{18\cdots 47}a^{14}-\frac{11\cdots 47}{18\cdots 47}a^{12}+\frac{10\cdots 24}{61\cdots 49}a^{10}+\frac{14\cdots 41}{18\cdots 47}a^{8}-\frac{41\cdots 74}{18\cdots 47}a^{6}-\frac{35\cdots 73}{61\cdots 49}a^{4}+\frac{20\cdots 18}{18\cdots 47}a^{2}+\frac{18\cdots 03}{18\cdots 47}$, $\frac{16\cdots 38}{18\cdots 47}a^{14}-\frac{22\cdots 33}{18\cdots 47}a^{12}+\frac{12\cdots 51}{61\cdots 49}a^{10}+\frac{36\cdots 72}{18\cdots 47}a^{8}-\frac{42\cdots 09}{18\cdots 47}a^{6}-\frac{46\cdots 51}{61\cdots 49}a^{4}+\frac{22\cdots 13}{18\cdots 47}a^{2}+\frac{62\cdots 78}{18\cdots 47}$, $\frac{98\cdots 14}{99\cdots 27}a^{15}-\frac{49\cdots 42}{18\cdots 47}a^{14}-\frac{42\cdots 70}{33\cdots 09}a^{13}+\frac{63\cdots 20}{18\cdots 47}a^{12}+\frac{11\cdots 86}{99\cdots 27}a^{11}-\frac{64\cdots 31}{20\cdots 83}a^{10}+\frac{22\cdots 88}{99\cdots 27}a^{9}-\frac{11\cdots 68}{18\cdots 47}a^{8}-\frac{68\cdots 54}{99\cdots 27}a^{7}+\frac{34\cdots 80}{18\cdots 47}a^{6}-\frac{29\cdots 70}{33\cdots 09}a^{5}+\frac{50\cdots 61}{20\cdots 83}a^{4}-\frac{59\cdots 62}{99\cdots 27}a^{3}+\frac{29\cdots 44}{18\cdots 47}a^{2}-\frac{45\cdots 72}{99\cdots 27}a+\frac{22\cdots 79}{18\cdots 47}$, $\frac{52\cdots 39}{33\cdots 09}a^{15}+\frac{27\cdots 45}{18\cdots 47}a^{14}-\frac{24\cdots 90}{33\cdots 09}a^{13}-\frac{42\cdots 94}{61\cdots 49}a^{12}-\frac{32\cdots 55}{99\cdots 27}a^{11}-\frac{19\cdots 66}{61\cdots 49}a^{10}+\frac{57\cdots 17}{99\cdots 27}a^{9}+\frac{10\cdots 82}{18\cdots 47}a^{8}+\frac{49\cdots 94}{33\cdots 09}a^{7}+\frac{28\cdots 75}{20\cdots 83}a^{6}-\frac{18\cdots 34}{99\cdots 27}a^{5}-\frac{10\cdots 53}{61\cdots 49}a^{4}-\frac{22\cdots 70}{33\cdots 09}a^{3}-\frac{12\cdots 47}{18\cdots 47}a^{2}-\frac{58\cdots 41}{99\cdots 27}a-\frac{11\cdots 80}{20\cdots 83}$, $\frac{40\cdots 97}{29\cdots 81}a^{15}-\frac{75\cdots 20}{61\cdots 49}a^{14}-\frac{92\cdots 31}{99\cdots 27}a^{13}+\frac{16\cdots 56}{18\cdots 47}a^{12}-\frac{36\cdots 18}{99\cdots 27}a^{11}+\frac{18\cdots 14}{61\cdots 49}a^{10}+\frac{18\cdots 06}{29\cdots 81}a^{9}-\frac{46\cdots 55}{61\cdots 49}a^{8}+\frac{16\cdots 58}{99\cdots 27}a^{7}-\frac{30\cdots 82}{18\cdots 47}a^{6}-\frac{12\cdots 62}{99\cdots 27}a^{5}+\frac{17\cdots 40}{61\cdots 49}a^{4}-\frac{20\cdots 83}{29\cdots 81}a^{3}+\frac{48\cdots 95}{61\cdots 49}a^{2}-\frac{59\cdots 50}{99\cdots 27}a+\frac{12\cdots 18}{18\cdots 47}$, $\frac{18\cdots 14}{12\cdots 47}a^{15}-\frac{13\cdots 18}{18\cdots 47}a^{14}-\frac{20\cdots 06}{12\cdots 47}a^{13}+\frac{14\cdots 23}{18\cdots 47}a^{12}-\frac{15\cdots 94}{14\cdots 83}a^{11}+\frac{11\cdots 60}{20\cdots 83}a^{10}+\frac{37\cdots 05}{12\cdots 47}a^{9}-\frac{27\cdots 81}{18\cdots 47}a^{8}+\frac{54\cdots 39}{12\cdots 47}a^{7}-\frac{39\cdots 71}{18\cdots 47}a^{6}-\frac{50\cdots 10}{43\cdots 49}a^{5}+\frac{36\cdots 90}{61\cdots 49}a^{4}-\frac{28\cdots 34}{12\cdots 47}a^{3}+\frac{20\cdots 66}{18\cdots 47}a^{2}-\frac{23\cdots 75}{12\cdots 47}a+\frac{17\cdots 98}{18\cdots 47}$
|
| |
| Regulator: | \( 67240256894900 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 67240256894900 \cdot 96}{2\cdot\sqrt{43843732772164778616036288947079464176386048}}\cr\approx \mathstrut & 0.194480597048614 \end{aligned}\] (assuming GRH)
Galois group
$C_2^7.(C_2\times S_4)$ (as 16T1675):
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for $C_2^7.(C_2\times S_4)$ |
| Character table for $C_2^7.(C_2\times S_4)$ |
Intermediate fields
| \(\Q(\sqrt{51753}) \), 4.4.3981.1, 8.8.7173681975339714081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.8.43843732772164778616036288947079464176386048.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{7}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.2.8a5.2 | $x^{8} + 2 x^{7} + 4 x^{5} + 6 x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 5$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $$[2, 2, 2]^{4}$$ |
| 2.4.2.8a5.1 | $x^{8} + 2 x^{7} + 4 x^{5} + 6 x^{4} + 2 x^{3} + 3 x^{2} + 6 x + 5$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $$[2, 2, 2]^{4}$$ | |
|
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(13\)
| 13.1.4.3a1.3 | $x^{4} + 52$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 13.6.2.6a1.2 | $x^{12} + 20 x^{9} + 22 x^{8} + 22 x^{7} + 104 x^{6} + 220 x^{5} + 341 x^{4} + 282 x^{3} + 165 x^{2} + 44 x + 17$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(1327\)
| Deg $4$ | $2$ | $2$ | $2$ | |||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |