Normalized defining polynomial
\( x^{16} - 4 x^{15} - 109 x^{14} + 323 x^{13} + 1718 x^{12} + 15156 x^{11} - 137850 x^{10} - 967355 x^{9} + 19130705 x^{8} - 30590271 x^{7} - 338054405 x^{6} + 461570699 x^{5} + 158786487 x^{4} + 1377467087 x^{3} - 3831224257 x^{2} - 7371959 x + 2749255547 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43753597243831965200444502399484946401=37^{10}\cdot 157^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $225.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{217} a^{14} - \frac{103}{217} a^{13} + \frac{87}{217} a^{12} - \frac{40}{217} a^{11} - \frac{14}{31} a^{10} + \frac{12}{217} a^{9} - \frac{32}{217} a^{8} - \frac{67}{217} a^{7} + \frac{65}{217} a^{6} + \frac{48}{217} a^{5} + \frac{2}{217} a^{4} - \frac{44}{217} a^{3} - \frac{30}{217} a^{2} + \frac{29}{217} a + \frac{16}{217}$, $\frac{1}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{15} - \frac{5658910987290376361144664519038164149580793055296448248619912789693646645}{5172835393224495879511891752915391908835127527637517208194144908020408153159} a^{14} + \frac{13880259986165860886562167680361554930107718046107278049254101570604996505583}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{13} + \frac{3890272780857178909906498492845414202430589567846223811930715630282355459510}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{12} - \frac{10454382341066490447350856890971605913666639647711104491670624991836521414747}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{11} + \frac{9424535719793003634335057472459022973621554232799576925207348927252751381868}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{10} - \frac{570499874357846133679796132742539972390437776040537836352646921223260677081}{5172835393224495879511891752915391908835127527637517208194144908020408153159} a^{9} + \frac{15569456473159693460346616931700580152219994889916509421936081268797514267987}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{8} + \frac{14523910088621275849020061836640203640441838606862788883672073216854690429457}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{7} + \frac{334918510274746696727290104259333729554965340562813568353916304304354880359}{1168059604921660359889782008722830431027286861079439369592226269552995389423} a^{6} - \frac{17178478503452029363186695523766808411682209843323576474479506450662697368788}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{5} + \frac{8944998994417962309716187865570244973637207499669456346316306424166307351993}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{4} - \frac{14834883154458053899688608019404504048240619984191286536781794259218212759778}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{3} + \frac{13213303004826465789320335998750600254461737307803470458477958706676590361901}{36209847752571471156583242270407743361845892693462620457359014356142857072113} a^{2} - \frac{2581467610253398803101488971985741841022530282065658807526926062998428822758}{5172835393224495879511891752915391908835127527637517208194144908020408153159} a - \frac{16794227691311218767845096517723759545835044729181846421794374466282238424610}{36209847752571471156583242270407743361845892693462620457359014356142857072113}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6277570089570 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{157}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{5809}) \), 4.4.912013.1 x2, 4.4.214933.1 x2, \(\Q(\sqrt{37}, \sqrt{157})\), 8.8.1138689997959361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 157 | Data not computed | ||||||