Normalized defining polynomial
\( x^{16} - 4 x^{15} - 10 x^{14} + 127 x^{13} - 380 x^{12} - 84 x^{11} + 890 x^{10} + 591 x^{9} - 2244 x^{8} - 1586 x^{7} + 3018 x^{6} + 2649 x^{5} - 501 x^{4} - 2078 x^{3} - 204 x^{2} + 520 x - 80 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43149301773875176172265625=5^{8}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{10} a^{2}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{3}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{8} - \frac{1}{20} a^{7} + \frac{3}{10} a^{6} - \frac{3}{20} a^{5} - \frac{3}{20} a^{4} - \frac{1}{20} a^{3} - \frac{3}{20} a^{2}$, $\frac{1}{100} a^{11} + \frac{1}{50} a^{10} + \frac{3}{100} a^{9} + \frac{3}{100} a^{8} + \frac{6}{25} a^{7} + \frac{9}{20} a^{6} + \frac{39}{100} a^{5} - \frac{37}{100} a^{4} + \frac{43}{100} a^{3} - \frac{2}{25} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{100} a^{12} - \frac{1}{100} a^{10} - \frac{3}{100} a^{9} - \frac{1}{50} a^{8} - \frac{23}{100} a^{7} + \frac{9}{100} a^{6} + \frac{1}{4} a^{5} - \frac{43}{100} a^{4} - \frac{7}{50} a^{3} + \frac{3}{50} a^{2} + \frac{1}{5}$, $\frac{1}{1000} a^{13} - \frac{1}{1000} a^{12} + \frac{1}{250} a^{11} + \frac{1}{125} a^{10} + \frac{3}{500} a^{9} - \frac{3}{500} a^{8} + \frac{121}{500} a^{7} - \frac{69}{1000} a^{6} + \frac{327}{1000} a^{5} - \frac{193}{500} a^{4} + \frac{1}{200} a^{3} - \frac{32}{125} a^{2} + \frac{1}{50} a + \frac{12}{25}$, $\frac{1}{5000} a^{14} - \frac{1}{2500} a^{13} + \frac{1}{1000} a^{12} + \frac{3}{625} a^{11} - \frac{14}{625} a^{10} + \frac{37}{1250} a^{9} - \frac{121}{2500} a^{8} + \frac{219}{5000} a^{7} - \frac{113}{625} a^{6} - \frac{83}{5000} a^{5} + \frac{1301}{5000} a^{4} - \frac{151}{5000} a^{3} - \frac{817}{2500} a^{2} - \frac{57}{250} a - \frac{42}{125}$, $\frac{1}{7427991225475000} a^{15} - \frac{120130897589}{3713995612737500} a^{14} - \frac{678573252093}{7427991225475000} a^{13} - \frac{3705943374989}{1856997806368750} a^{12} - \frac{1084382995617}{928498903184375} a^{11} + \frac{13651493851121}{742799122547500} a^{10} + \frac{14634723379113}{371399561273750} a^{9} - \frac{226818551606789}{7427991225475000} a^{8} - \frac{606860798504949}{3713995612737500} a^{7} - \frac{773516039812879}{7427991225475000} a^{6} + \frac{196762202949809}{7427991225475000} a^{5} + \frac{2167609428395823}{7427991225475000} a^{4} + \frac{287714326333499}{928498903184375} a^{3} - \frac{55284628272157}{928498903184375} a^{2} - \frac{20258335610901}{185699780636875} a - \frac{40860712894583}{185699780636875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35504723.7489 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{505}) \), 4.4.51005.1 x2, 4.4.2525.1 x2, \(\Q(\sqrt{5}, \sqrt{101})\), 8.4.6568812813125.2 x2, 8.4.65037750625.1 x2, 8.8.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101 | Data not computed | ||||||