Normalized defining polynomial
\( x^{16} - 4 x^{15} - 337 x^{14} + 1992 x^{13} + 17170 x^{12} - 206720 x^{11} + 1442572 x^{10} + 1229215 x^{9} - 25307029 x^{8} + 612567235 x^{7} - 4410149877 x^{6} - 16828496949 x^{5} + 11289021552 x^{4} - 92952384657 x^{3} - 1781065804040 x^{2} + 6211470910074 x - 4334460464259 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43029097861869577828178499597148046196454969=53^{14}\cdot 89^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $533.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{53} a^{8} - \frac{2}{53} a^{7} + \frac{15}{53} a^{6} + \frac{19}{53} a^{5} + \frac{4}{53} a^{4} - \frac{22}{53} a^{3} + \frac{16}{53} a^{2} + \frac{14}{53} a - \frac{17}{53}$, $\frac{1}{53} a^{9} + \frac{11}{53} a^{7} - \frac{4}{53} a^{6} - \frac{11}{53} a^{5} - \frac{14}{53} a^{4} + \frac{25}{53} a^{3} - \frac{7}{53} a^{2} + \frac{11}{53} a + \frac{19}{53}$, $\frac{1}{53} a^{10} + \frac{18}{53} a^{7} - \frac{17}{53} a^{6} - \frac{11}{53} a^{5} - \frac{19}{53} a^{4} + \frac{23}{53} a^{3} - \frac{6}{53} a^{2} + \frac{24}{53} a - \frac{25}{53}$, $\frac{1}{53} a^{11} + \frac{19}{53} a^{7} - \frac{16}{53} a^{6} + \frac{10}{53} a^{5} + \frac{4}{53} a^{4} + \frac{19}{53} a^{3} + \frac{1}{53} a^{2} - \frac{12}{53} a - \frac{12}{53}$, $\frac{1}{53} a^{12} + \frac{22}{53} a^{7} - \frac{10}{53} a^{6} + \frac{14}{53} a^{5} - \frac{4}{53} a^{4} - \frac{5}{53} a^{3} + \frac{2}{53} a^{2} - \frac{13}{53} a + \frac{5}{53}$, $\frac{1}{53} a^{13} - \frac{19}{53} a^{7} + \frac{2}{53} a^{6} + \frac{2}{53} a^{5} + \frac{13}{53} a^{4} + \frac{9}{53} a^{3} + \frac{6}{53} a^{2} + \frac{15}{53} a + \frac{3}{53}$, $\frac{1}{1649667453} a^{14} + \frac{4112449}{1649667453} a^{13} + \frac{11890456}{1649667453} a^{12} - \frac{2165533}{1649667453} a^{11} - \frac{7195942}{1649667453} a^{10} + \frac{1785395}{1649667453} a^{9} + \frac{7090910}{1649667453} a^{8} + \frac{544718435}{1649667453} a^{7} - \frac{11250571}{78555593} a^{6} - \frac{675378581}{1649667453} a^{5} - \frac{604613680}{1649667453} a^{4} + \frac{613686253}{1649667453} a^{3} - \frac{71067925}{1649667453} a^{2} + \frac{28294666}{1649667453} a - \frac{59890049}{549889151}$, $\frac{1}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{15} + \frac{7419342682648709866788915038532740704378421918903875631571783623630}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{14} - \frac{125203800289553003803802115803614276962293781031293439147472114171883516412}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{13} + \frac{137401702021694430958159164447074703716160086030639542072377336538331281642}{15667638682075301411771938977138153402908742435191361208681992922544579453207} a^{12} + \frac{76231119193433532930089162051246933813586913828844212793755058789637964210}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{11} + \frac{1756908497049776546523122765615733245749184807679369077102223971623536373}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{10} + \frac{25150980322955947437452139042565802193281644008514257025018624035069482786}{2764877414483876719724459819494968247572131017974946095649763456919631668213} a^{9} + \frac{187696828001123620365877757187439425704232005922232800236209319031609475882}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{8} - \frac{3232498432625181675226220025691501559709767606516898594111239914774749792181}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{7} + \frac{1648457637535990921907840936752628206930807773965393586233333507296700330179}{47002916046225904235315816931414460208726227305574083626045978767633738359621} a^{6} - \frac{1976158050316299202156031457525611657396157796208908769774655672845404819287}{15667638682075301411771938977138153402908742435191361208681992922544579453207} a^{5} + \frac{6332658656728118283220836992858977891093762278531754160595378810178722173580}{15667638682075301411771938977138153402908742435191361208681992922544579453207} a^{4} + \frac{7066553205393022880962771601952514568581158390222483317009442344600980165331}{15667638682075301411771938977138153402908742435191361208681992922544579453207} a^{3} + \frac{272289990074193531728017483552620034640926719960607475536146124542004406271}{921625804827958906574819939831656082524043672658315365216587818973210556071} a^{2} - \frac{1637552795351366828130569762066928899069008492349417784863852931432403018016}{6714702292317986319330830990202065744103746757939154803720854109661962622803} a + \frac{287183884391323047215250229275495978088936815848277765897611639677950758664}{15667638682075301411771938977138153402908742435191361208681992922544579453207}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14089077231500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{4717}) \), \(\Q(\sqrt{89}) \), 4.4.13250053.1 x2, 4.4.1179254717.1 x2, \(\Q(\sqrt{53}, \sqrt{89})\), 8.8.1390641687566750089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $89$ | 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |