Normalized defining polynomial
\( x^{16} - 2 x^{14} - 1039 x^{12} + 1084 x^{10} + 367554 x^{8} - 10578 x^{6} - 52272376 x^{4} - 31979344 x^{2} + 2376465001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(429053757833296459233761689600000000=2^{24}\cdot 5^{8}\cdot 29^{6}\cdot 41^{4}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{10} a^{6} + \frac{1}{5} a^{2} - \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{7} + \frac{1}{5} a^{3} - \frac{1}{10} a$, $\frac{1}{410} a^{10} - \frac{1}{205} a^{8} + \frac{191}{410} a^{6} + \frac{91}{205} a^{4} - \frac{93}{410} a^{2} + \frac{1}{10}$, $\frac{1}{410} a^{11} - \frac{1}{205} a^{9} + \frac{191}{410} a^{7} + \frac{91}{205} a^{5} - \frac{93}{410} a^{3} + \frac{1}{10} a$, $\frac{1}{33620} a^{12} - \frac{1}{820} a^{11} + \frac{39}{33620} a^{10} - \frac{39}{820} a^{9} - \frac{1121}{33620} a^{8} - \frac{15}{82} a^{7} - \frac{11257}{33620} a^{6} - \frac{91}{410} a^{5} - \frac{6571}{33620} a^{4} + \frac{11}{820} a^{3} - \frac{98}{205} a^{2} - \frac{1}{2} a + \frac{1}{20}$, $\frac{1}{33620} a^{13} - \frac{1}{16810} a^{11} + \frac{321}{16810} a^{9} - \frac{1}{20} a^{8} + \frac{12851}{33620} a^{7} - \frac{9}{20} a^{6} - \frac{14033}{33620} a^{5} - \frac{217}{820} a^{3} - \frac{1}{10} a^{2} + \frac{9}{20} a - \frac{9}{20}$, $\frac{1}{72706223778462820} a^{14} - \frac{44681244329}{72706223778462820} a^{12} - \frac{1}{820} a^{11} + \frac{16893943177113}{14541244755692564} a^{10} + \frac{1}{410} a^{9} + \frac{905391893186617}{18176555944615705} a^{8} + \frac{219}{820} a^{7} - \frac{237417764747556}{519330169846163} a^{6} - \frac{91}{410} a^{5} + \frac{28647582693473}{443330632795505} a^{4} + \frac{93}{820} a^{3} + \frac{3947175889549}{43251769053220} a^{2} - \frac{1}{20} a - \frac{662320637}{36376592980}$, $\frac{1}{72706223778462820} a^{15} - \frac{44681244329}{72706223778462820} a^{13} - \frac{1049102668384}{18176555944615705} a^{11} - \frac{1}{820} a^{10} + \frac{163588636941529}{72706223778462820} a^{9} + \frac{1}{410} a^{8} + \frac{373825967570569}{1038660339692326} a^{7} + \frac{219}{820} a^{6} - \frac{27900076761041}{177332253118202} a^{5} - \frac{91}{410} a^{4} + \frac{226369127379}{2162588452661} a^{3} + \frac{93}{820} a^{2} + \frac{17525975853}{36376592980} a - \frac{1}{20}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 507241225343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n839 are not computed |
| Character table for t16n839 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.31600.1, 4.4.916400.1, 4.4.725.1, 8.8.839788960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |