Normalized defining polynomial
\( x^{16} + 18 x^{14} - 8235 x^{12} - 486190 x^{10} + 4768268 x^{8} - 12030478 x^{6} + 14819405 x^{4} - 9404606 x^{2} + 1585081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428680604268109875973804253861404748689=37^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $259.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{12} + \frac{1}{16} a^{6} - \frac{3}{32}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{8} a^{8} + \frac{1}{32} a^{7} + \frac{3}{32} a^{6} - \frac{3}{8} a^{2} + \frac{29}{64} a - \frac{5}{64}$, $\frac{1}{28203497791500920253075584} a^{14} - \frac{390316358795463895234497}{28203497791500920253075584} a^{12} + \frac{175043394722098138309709}{3525437223937615031634448} a^{10} + \frac{216816736695150807538973}{14101748895750460126537792} a^{8} + \frac{562373746775633325019903}{14101748895750460126537792} a^{6} - \frac{386970588684701446378753}{3525437223937615031634448} a^{4} - \frac{12438856314648915155449083}{28203497791500920253075584} a^{2} - \frac{1}{2} a + \frac{12471241486539159784742243}{28203497791500920253075584}$, $\frac{1}{71016407438999317197244320512} a^{15} - \frac{1}{56406995583001840506151168} a^{14} - \frac{3034394276748675168960333}{71016407438999317197244320512} a^{13} - \frac{491042947188939862674115}{56406995583001840506151168} a^{12} + \frac{386210419415890944102281765}{8877050929874914649655540064} a^{11} - \frac{175043394722098138309709}{7050874447875230063268896} a^{10} - \frac{1840061414158739895705642883}{35508203719499658598622160256} a^{9} - \frac{216816736695150807538973}{28203497791500920253075584} a^{8} + \frac{3872373804936261341817552419}{35508203719499658598622160256} a^{7} + \frac{2081704171177577948705933}{28203497791500920253075584} a^{6} - \frac{1981682690441624349224938529}{8877050929874914649655540064} a^{5} - \frac{1375748023284106069438471}{7050874447875230063268896} a^{4} + \frac{9647259137274416271522938437}{71016407438999317197244320512} a^{3} + \frac{12438856314648915155449083}{56406995583001840506151168} a^{2} - \frac{2003197491299792234552253401}{71016407438999317197244320512} a - \frac{16878038016461178574285303}{56406995583001840506151168}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96118684976900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |