Normalized defining polynomial
\( x^{16} - 808 x^{14} - 110144 x^{12} + 28031400 x^{10} + 972187419 x^{8} - 190660506576 x^{6} + 2863944241360 x^{4} + 9042674097920 x^{2} + 592949281024 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428329216131304888705048916200034767627878400000000=2^{32}\cdot 5^{8}\cdot 17^{2}\cdot 19^{10}\cdot 331^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1460.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 19, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} + \frac{1}{6} a$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a$, $\frac{1}{36} a^{10} - \frac{1}{18} a^{8} + \frac{1}{18} a^{6} + \frac{7}{18} a^{4} + \frac{1}{36} a^{2} + \frac{4}{9}$, $\frac{1}{72} a^{11} + \frac{1}{18} a^{9} - \frac{1}{18} a^{7} + \frac{1}{9} a^{5} + \frac{31}{72} a^{3} + \frac{1}{18} a$, $\frac{1}{232560} a^{12} + \frac{7}{58140} a^{10} - \frac{295}{5814} a^{8} + \frac{781}{29070} a^{6} - \frac{173}{232560} a^{4} + \frac{349}{3060} a^{2} - \frac{2}{5}$, $\frac{1}{465120} a^{13} + \frac{7}{116280} a^{11} + \frac{337}{5814} a^{9} + \frac{781}{58140} a^{7} + \frac{116107}{465120} a^{5} + \frac{349}{6120} a^{3} - \frac{1}{30} a$, $\frac{1}{12242639260746035936540274061962694360434240} a^{14} + \frac{150332823227132947531415609656990379}{139120900690295862915230387067757890459480} a^{12} - \frac{4618495134328026122717037275913484330909}{382582476898313623016883564436334198763570} a^{10} - \frac{13409751915925085862420733793524924113359}{1530329907593254492067534257745336795054280} a^{8} + \frac{558331428342904953378449869099851837917339}{12242639260746035936540274061962694360434240} a^{6} + \frac{11175851720752248256515403316655854903803}{22504851582253742530404915555078482280210} a^{4} - \frac{8846020220874038956476665623941059097787}{40271839673506697159671954151193073554060} a^{2} - \frac{14968476943127291121727303725267327058}{592232936375098487642234619870486375795}$, $\frac{1}{3648306499702318709089001670464882919409403520} a^{15} + \frac{28864657011110695984730669906407844963}{41458028405708167148738655346191851356925040} a^{13} + \frac{909132043802249449224849792318893248879313}{228019156231394919318062604404055182463087720} a^{11} + \frac{2522241226508915671650415081553009864060389}{50670923606976648737347245423123373880686160} a^{9} - \frac{10877818610293282103320062605556683630315233}{729661299940463741817800334092976583881880704} a^{7} - \frac{4685586678150816529268957098741058823120167}{19001596352616243276505217033671265205257310} a^{5} + \frac{11697320487564798268653955231043874323049}{66672267903916643075456901872530755106166} a^{3} - \frac{53565986657171477207038453264903246507277}{176485415039779349317385916721404939986910} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1743645359930000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{31445}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{6289}) \), 4.4.7600.1, 4.4.832663600.1, \(\Q(\sqrt{5}, \sqrt{6289})\), 8.8.250291650146150560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.51 | $x^{8} + 3$ | $4$ | $2$ | $16$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 3]^{2}$ |
| 2.8.16.49 | $x^{8} + 14 x^{4} + 12 x^{2} + 8 x + 4$ | $4$ | $2$ | $16$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.6.1 | $x^{8} + 57 x^{4} + 1444$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 331 | Data not computed | ||||||