Normalized defining polynomial
\( x^{16} - 7 x^{15} + 55 x^{14} + 2673 x^{13} - 13589 x^{12} - 373907 x^{11} - 1807538 x^{10} + 32057398 x^{9} + 235889409 x^{8} - 1022153529 x^{7} - 12091496560 x^{6} + 8803629494 x^{5} + 301450266691 x^{4} + 119599276971 x^{3} - 3126568524328 x^{2} - 1974895242930 x + 6612908543775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42446930611030025911778708127377056380611209=61^{14}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $533.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{9} - \frac{2}{27} a^{8} + \frac{4}{27} a^{7} + \frac{5}{27} a^{6} + \frac{2}{9} a^{5} - \frac{13}{27} a^{4} + \frac{10}{27} a^{3} + \frac{1}{27} a^{2} - \frac{1}{3}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{11} - \frac{11}{81} a^{9} - \frac{13}{81} a^{8} - \frac{4}{27} a^{7} - \frac{7}{81} a^{6} + \frac{8}{81} a^{5} + \frac{13}{27} a^{4} + \frac{14}{81} a^{3} + \frac{16}{81} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{2158569} a^{13} + \frac{334}{79947} a^{12} + \frac{29339}{2158569} a^{11} - \frac{33059}{2158569} a^{10} + \frac{70765}{2158569} a^{9} + \frac{176437}{2158569} a^{8} - \frac{245218}{2158569} a^{7} + \frac{46643}{102789} a^{6} + \frac{898348}{2158569} a^{5} - \frac{11782}{308367} a^{4} + \frac{754643}{2158569} a^{3} + \frac{81710}{308367} a^{2} + \frac{89036}{239841} a + \frac{100540}{239841}$, $\frac{1}{2158569} a^{14} + \frac{11114}{2158569} a^{12} + \frac{12409}{2158569} a^{11} + \frac{74464}{2158569} a^{10} - \frac{245114}{2158569} a^{9} + \frac{310739}{2158569} a^{8} + \frac{47330}{719523} a^{7} - \frac{194828}{2158569} a^{6} - \frac{275281}{2158569} a^{5} - \frac{41236}{2158569} a^{4} + \frac{769718}{2158569} a^{3} - \frac{35872}{239841} a^{2} + \frac{11659}{34263} a + \frac{3302}{8883}$, $\frac{1}{15701821307511759504720239878109741024193910560985984981015944033284808015} a^{15} + \frac{90666347663639618513532602240534403933702158467387734798268115383}{747705776548179024034297137052844810675900502904094522905521144442133715} a^{14} + \frac{348443082586287911161792108898971629813618342081535698030950034833}{3140364261502351900944047975621948204838782112197196996203188806656961603} a^{13} - \frac{4443193105436545801487793939549150586287887588782308528160972373674661}{2243117329644537072102891411158534432027701508712283568716563433326401145} a^{12} + \frac{4691777043867907246197814919190701928168816266803078314804722093195798}{2243117329644537072102891411158534432027701508712283568716563433326401145} a^{11} + \frac{5563993942622241691374539711571024259035626962506693350064931769212003}{747705776548179024034297137052844810675900502904094522905521144442133715} a^{10} + \frac{1981369484953422337232459313335986618026486862626869277925581829362480532}{15701821307511759504720239878109741024193910560985984981015944033284808015} a^{9} + \frac{335007291091392220636370381523728790036599030007722011467882804775884098}{15701821307511759504720239878109741024193910560985984981015944033284808015} a^{8} + \frac{1322539368835347758024784494616020891390728274746478594680710543053697044}{15701821307511759504720239878109741024193910560985984981015944033284808015} a^{7} + \frac{2973490960381178719034060104215514006243674138058076977476593796461290301}{15701821307511759504720239878109741024193910560985984981015944033284808015} a^{6} - \frac{625221660089680341524006863030057577011384425612208002846921080105558074}{3140364261502351900944047975621948204838782112197196996203188806656961603} a^{5} + \frac{808539020767105705297786871059322114827164549027246398664799363173790406}{1744646811945751056080026653123304558243767840109553886779549337031645335} a^{4} + \frac{163644680965918287836669452854218340244912795262076542700707188681533178}{2243117329644537072102891411158534432027701508712283568716563433326401145} a^{3} - \frac{890218768398675106274610815010994557437411051747229339401226841202363297}{2243117329644537072102891411158534432027701508712283568716563433326401145} a^{2} - \frac{544682150841325218558029964587109944382925258895777805217412856731784887}{1744646811945751056080026653123304558243767840109553886779549337031645335} a - \frac{157572734478456262664037424664950503329841451064771312897528808422311550}{348929362389150211216005330624660911648753568021910777355909867406329067}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262280316918000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{4453}) \), \(\Q(\sqrt{73}) \), 4.4.16569613.1 x2, 4.4.1209581749.1 x2, \(\Q(\sqrt{61}, \sqrt{73})\), 8.8.1463088007513899001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.4.1 | $x^{8} + 138554 x^{4} - 389017 x^{2} + 4799302729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 73.8.6.2 | $x^{8} + 1533 x^{4} + 644809$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |