Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 126 x^{13} - 374 x^{12} - 262 x^{11} + 2066 x^{10} - 512 x^{9} - 1818 x^{8} - 5738 x^{7} + 5006 x^{6} + 12712 x^{5} - 7819 x^{4} - 8906 x^{3} + 3584 x^{2} + 2244 x - 409 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42415313391616000000000000=2^{24}\cdot 5^{12}\cdot 11^{4}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{145} a^{14} - \frac{7}{145} a^{13} - \frac{9}{145} a^{12} + \frac{2}{145} a^{11} + \frac{2}{29} a^{10} + \frac{8}{145} a^{9} + \frac{4}{145} a^{8} + \frac{67}{145} a^{7} + \frac{2}{145} a^{6} + \frac{14}{145} a^{5} - \frac{14}{145} a^{4} - \frac{23}{145} a^{3} - \frac{19}{145} a^{2} - \frac{61}{145} a - \frac{8}{29}$, $\frac{1}{1139763255255563682376895} a^{15} - \frac{2174647026183849107104}{1139763255255563682376895} a^{14} + \frac{67978823833281461439109}{1139763255255563682376895} a^{13} + \frac{335030592188940181609}{1139763255255563682376895} a^{12} + \frac{12797691592814665693890}{227952651051112736475379} a^{11} - \frac{3882139504166602133379}{227952651051112736475379} a^{10} - \frac{76284771077848785411}{1598545940049878937415} a^{9} - \frac{45770461634150751170852}{1139763255255563682376895} a^{8} + \frac{5429374150977446702071}{49554924141546247059865} a^{7} + \frac{61218751700779807632514}{227952651051112736475379} a^{6} + \frac{39568608936618028154143}{227952651051112736475379} a^{5} - \frac{359120541026594817714251}{1139763255255563682376895} a^{4} - \frac{426112753914162240063789}{1139763255255563682376895} a^{3} - \frac{397338950566283700368074}{1139763255255563682376895} a^{2} + \frac{91500365907095986064578}{227952651051112736475379} a + \frac{295032543658307093864727}{1139763255255563682376895}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2068073.87812 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T542):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.638000.2, 4.4.725.1, 4.4.22000.1, 8.4.37004000000.2, 8.4.1480160000.4, 8.8.407044000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |