Normalized defining polynomial
\( x^{16} - 6 x^{15} - 511 x^{14} + 2893 x^{13} - 95772 x^{12} + 3821262 x^{11} - 31999820 x^{10} - 127119113 x^{9} + 4325628545 x^{8} - 31134488218 x^{7} + 185224572711 x^{6} - 1648592706546 x^{5} + 9840293716774 x^{4} - 5131102198184 x^{3} - 221066965507360 x^{2} + 391275792985264 x + 1284521964547264 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(420102507961629136806462464459178014450156250000=2^{4}\cdot 3^{8}\cdot 5^{10}\cdot 7^{8}\cdot 37^{4}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $947.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} - \frac{3}{41} a^{7} - \frac{14}{41} a^{6} - \frac{10}{41} a^{5} - \frac{3}{41} a^{4} + \frac{5}{41} a^{3} + \frac{17}{41} a^{2} - \frac{15}{41} a + \frac{18}{41}$, $\frac{1}{82} a^{9} - \frac{1}{82} a^{8} + \frac{21}{82} a^{7} - \frac{19}{41} a^{6} + \frac{9}{41} a^{5} - \frac{1}{82} a^{4} + \frac{27}{82} a^{3} + \frac{19}{82} a^{2} - \frac{6}{41} a + \frac{18}{41}$, $\frac{1}{82} a^{10} - \frac{39}{82} a^{7} + \frac{7}{41} a^{6} - \frac{29}{82} a^{5} + \frac{2}{41} a^{4} + \frac{14}{41} a^{3} - \frac{5}{82} a^{2} - \frac{2}{41} a + \frac{2}{41}$, $\frac{1}{164} a^{11} + \frac{1}{164} a^{8} + \frac{29}{82} a^{7} - \frac{15}{164} a^{6} - \frac{17}{41} a^{5} - \frac{5}{82} a^{4} - \frac{51}{164} a^{3} - \frac{31}{82} a^{2} - \frac{11}{82} a + \frac{16}{41}$, $\frac{1}{12136} a^{12} - \frac{3}{1517} a^{11} + \frac{7}{1517} a^{10} - \frac{3}{12136} a^{9} + \frac{21}{6068} a^{8} + \frac{3037}{12136} a^{7} - \frac{571}{1517} a^{6} + \frac{517}{6068} a^{5} + \frac{405}{12136} a^{4} + \frac{337}{6068} a^{3} + \frac{1491}{6068} a^{2} + \frac{229}{1517} a + \frac{319}{1517}$, $\frac{1}{12136} a^{13} - \frac{1}{6068} a^{11} + \frac{9}{12136} a^{10} - \frac{15}{6068} a^{9} + \frac{3}{296} a^{8} + \frac{733}{1517} a^{7} - \frac{5}{1517} a^{6} + \frac{209}{12136} a^{5} + \frac{535}{6068} a^{4} + \frac{1515}{3034} a^{3} - \frac{408}{1517} a^{2} - \frac{543}{3034} a - \frac{373}{1517}$, $\frac{1}{3762160} a^{14} - \frac{147}{3762160} a^{13} - \frac{49}{1881080} a^{12} + \frac{5789}{3762160} a^{11} + \frac{19171}{3762160} a^{10} + \frac{1201}{752432} a^{9} + \frac{29261}{3762160} a^{8} - \frac{75689}{235135} a^{7} - \frac{105149}{752432} a^{6} - \frac{1461657}{3762160} a^{5} - \frac{349541}{1881080} a^{4} - \frac{10973}{60680} a^{3} - \frac{10689}{25420} a^{2} - \frac{84713}{235135} a - \frac{33129}{235135}$, $\frac{1}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{15} - \frac{42916573999864069888491512618411345950243031033563863237653709720907807397044114399}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{14} + \frac{5461034003610518348527163681780900617807115199815290922358109072657517184184769546949}{174397183714864606654004215070504490852672951043920937879077862789369932935874460619352400} a^{13} + \frac{1932709044862652271945379598649473766278932625698051419278651947159470697399238131673}{139517746971891685323203372056403592682138360835136750303262290231495946348699568495481920} a^{12} + \frac{339032693493640065973226994729493782821165794937172179826293750850048082414573650819383}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{11} - \frac{2061892529183250227523419120918960617969569858140332806566053542923639689927771200126357}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{10} - \frac{823494794811998528687864126228346162870783611877211205518489331876374360650211981472819}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{9} - \frac{1691867764989870687450936799086227574115935152032040024150251223016626344455386058550673}{348794367429729213308008430141008981705345902087841875758155725578739865871748921238704800} a^{8} - \frac{4215518030948491466887790500119845782075691137491165429051683595462348578905357124613003}{11823537878973871637559607801390134973062572952130233076547651714533554775313522753854400} a^{7} + \frac{12698795278691740118426488559256744661295846613785704965632355247520810589966207453501543}{697588734859458426616016860282017963410691804175683751516311451157479731743497842477409600} a^{6} - \frac{86723924285572653066437265406327997847844490230686908820335648798937033133348407192952097}{174397183714864606654004215070504490852672951043920937879077862789369932935874460619352400} a^{5} - \frac{139622523798434001462211896045066522033434605957670108492494778878256036076672643856321481}{348794367429729213308008430141008981705345902087841875758155725578739865871748921238704800} a^{4} + \frac{956808294972994141870904291253494783532092633651380364553616566938486543474547561318879}{4359929592871615166350105376762612271316823776098023446976946569734248323396861515483810} a^{3} - \frac{167894570118080233079998719594127909126734347680807938944901269548238238075787008413382}{473905390529523387646750584430718725143133019141089505106189844536331339499658860378675} a^{2} - \frac{15751099171567083489085299103396394176455100263345751794929770458027753856023585843435093}{43599295928716151663501053767626122713168237760980234469769465697342483233968615154838100} a + \frac{2607230858098662054914231745053213744325830677670158342185742099629837145101390367722057}{10899823982179037915875263441906530678292059440245058617442366424335620808492153788709525}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{8}$, which has order $1024$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40415348358700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{4305}) \), \(\Q(\sqrt{105}) \), 4.4.3101445.1, 4.4.16885645.1, \(\Q(\sqrt{41}, \sqrt{105})\), 8.8.577378139308700625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||