Properties

Label 16.8.41884397835...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{38}\cdot 3^{4}\cdot 5^{8}\cdot 89^{4}\cdot 8761^{2}$
Root discriminant $145.84$
Ramified primes $2, 3, 5, 89, 8761$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1605

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![24868659204, 0, 4598473680, 0, -257592006, 0, -55191090, 0, 1552105, 0, 173140, 0, -3963, 0, -100, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 100*x^14 - 3963*x^12 + 173140*x^10 + 1552105*x^8 - 55191090*x^6 - 257592006*x^4 + 4598473680*x^2 + 24868659204)
 
gp: K = bnfinit(x^16 - 100*x^14 - 3963*x^12 + 173140*x^10 + 1552105*x^8 - 55191090*x^6 - 257592006*x^4 + 4598473680*x^2 + 24868659204, 1)
 

Normalized defining polynomial

\( x^{16} - 100 x^{14} - 3963 x^{12} + 173140 x^{10} + 1552105 x^{8} - 55191090 x^{6} - 257592006 x^{4} + 4598473680 x^{2} + 24868659204 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(41884397835209089533503078400000000=2^{38}\cdot 3^{4}\cdot 5^{8}\cdot 89^{4}\cdot 8761^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $145.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 89, 8761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{18} a^{12} + \frac{1}{9} a^{10} + \frac{1}{6} a^{8} - \frac{1}{9} a^{6} - \frac{5}{18} a^{4}$, $\frac{1}{18} a^{13} + \frac{1}{9} a^{11} + \frac{1}{6} a^{9} - \frac{1}{9} a^{7} - \frac{5}{18} a^{5}$, $\frac{1}{29004142669740917234129328435090846} a^{14} - \frac{439389792879508708212461974809199}{29004142669740917234129328435090846} a^{12} + \frac{990570336133136853554770488381781}{9668047556580305744709776145030282} a^{10} - \frac{8315141638740220774531586746532225}{29004142669740917234129328435090846} a^{8} - \frac{1294039915943964359165038248080333}{29004142669740917234129328435090846} a^{6} + \frac{36876786432503527074660122982649}{189569559932947171464897571471182} a^{4} - \frac{302891331574161809563680769984159}{1611341259430050957451629357505047} a^{2} - \frac{27167100615547029674555762743}{61307356824945818873478269509}$, $\frac{1}{29004142669740917234129328435090846} a^{15} - \frac{439389792879508708212461974809199}{29004142669740917234129328435090846} a^{13} + \frac{990570336133136853554770488381781}{9668047556580305744709776145030282} a^{11} - \frac{8315141638740220774531586746532225}{29004142669740917234129328435090846} a^{9} - \frac{1294039915943964359165038248080333}{29004142669740917234129328435090846} a^{7} + \frac{36876786432503527074660122982649}{189569559932947171464897571471182} a^{5} - \frac{302891331574161809563680769984159}{1611341259430050957451629357505047} a^{3} - \frac{27167100615547029674555762743}{61307356824945818873478269509} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 157042507345 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1605:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 124 conjugacy class representatives for t16n1605 are not computed
Character table for t16n1605 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.8.5069440000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.20.37$x^{8} + 14 x^{4} + 8 x^{3} + 20$$4$$2$$20$$(C_4^2 : C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
2.8.18.48$x^{8} + 6 x^{6} + 2 x^{4} + 12$$4$$2$$18$$(C_4^2 : C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed
$89$89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
8761Data not computed