Normalized defining polynomial
\( x^{16} - 2 x^{15} - 49 x^{14} + 89 x^{13} - 8849 x^{12} + 78999 x^{11} - 455761 x^{10} - 16878 x^{9} + 71363414 x^{8} - 504128958 x^{7} + 1709408121 x^{6} - 12816699466 x^{5} + 54011941451 x^{4} + 14877745689 x^{3} - 491053716521 x^{2} + 1002903417071 x - 804002796719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41587707333348149512906399539663989371009=17^{14}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $345.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{1004} a^{14} - \frac{3}{502} a^{13} - \frac{35}{251} a^{12} - \frac{167}{1004} a^{11} - \frac{113}{1004} a^{10} - \frac{119}{502} a^{9} + \frac{112}{251} a^{8} + \frac{83}{502} a^{7} + \frac{61}{502} a^{6} - \frac{239}{502} a^{5} + \frac{161}{1004} a^{4} - \frac{155}{502} a^{3} - \frac{137}{502} a^{2} - \frac{99}{1004} a + \frac{67}{1004}$, $\frac{1}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{15} - \frac{190325011271683375818662478609619858458679094528328529395518484300112027785104863}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{14} - \frac{30519345327190807659340590443882206467349642278683975093519625271928212815291452387}{471900878851046355073507657619651769731073797678565464212855685202294760082247084604} a^{13} + \frac{139093826352320469194822915815197947978709093171937310187431517240777029640094742091}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{12} + \frac{21477723237759908659959678932956815492041026609262369956247360532355869150347797028}{117975219712761588768376914404912942432768449419641366053213921300573690020561771151} a^{11} - \frac{99748080225604759332792377078835462859245775992484340420690380088394732362738988081}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{10} + \frac{1590506140475100221316765603585585559658167975317475257979906965658433885091713602}{117975219712761588768376914404912942432768449419641366053213921300573690020561771151} a^{9} + \frac{3312082131203608376924685813427887972861565946928368929961345069879612330167699647}{7043296699269348583186681457009727906433937278784559167356055003019324777346971412} a^{8} - \frac{16623340201557853217434000898974172545925079869349014704091566443511784302974980769}{117975219712761588768376914404912942432768449419641366053213921300573690020561771151} a^{7} - \frac{81262048951059264312460262736473870290520329459831027506598188924329122050610739991}{471900878851046355073507657619651769731073797678565464212855685202294760082247084604} a^{6} + \frac{126888685152244899990864544353233927944387942094507717951803135212837197509627480115}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{5} + \frac{420759372358276146213167842774742081960522782501212249971467791432627166092069742575}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{4} - \frac{52261188558429733895051682501411455906756546928817995114656520869756663325312141205}{117975219712761588768376914404912942432768449419641366053213921300573690020561771151} a^{3} + \frac{110499691772405950295534926632954052045109439006290261418377089065235536343223239721}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208} a^{2} + \frac{139409645689646684644553920864886537264652318856586269710804702580317670766051134789}{471900878851046355073507657619651769731073797678565464212855685202294760082247084604} a - \frac{236255881817944806547204579402041975335328165493520598090525220285579439107328376455}{943801757702092710147015315239303539462147595357130928425711370404589520164494169208}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59725155189600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{1513}) \), \(\Q(\sqrt{89}) \), 4.4.4913.1, 4.4.38915873.1, \(\Q(\sqrt{17}, \sqrt{89})\), 8.8.1514445171352129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 89 | Data not computed | ||||||