Properties

Label 16.8.41560691226...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{16}\cdot 5^{8}\cdot 17^{2}\cdot 19^{6}\cdot 103^{6}$
Root discriminant $109.31$
Ramified primes $2, 5, 17, 19, 103$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1665

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1106826361, 0, -4016433294, 0, -424623514, 0, 22902790, 0, 2503791, 0, -36902, 0, -3533, 0, 31, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 31*x^14 - 3533*x^12 - 36902*x^10 + 2503791*x^8 + 22902790*x^6 - 424623514*x^4 - 4016433294*x^2 + 1106826361)
 
gp: K = bnfinit(x^16 + 31*x^14 - 3533*x^12 - 36902*x^10 + 2503791*x^8 + 22902790*x^6 - 424623514*x^4 - 4016433294*x^2 + 1106826361, 1)
 

Normalized defining polynomial

\( x^{16} + 31 x^{14} - 3533 x^{12} - 36902 x^{10} + 2503791 x^{8} + 22902790 x^{6} - 424623514 x^{4} - 4016433294 x^{2} + 1106826361 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(415606912264471900087321600000000=2^{16}\cdot 5^{8}\cdot 17^{2}\cdot 19^{6}\cdot 103^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $109.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17, 19, 103$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{6}{19} a^{8} - \frac{5}{19} a^{6} - \frac{9}{19} a^{4}$, $\frac{1}{19} a^{11} - \frac{6}{19} a^{9} - \frac{5}{19} a^{7} - \frac{9}{19} a^{5}$, $\frac{1}{323} a^{12} + \frac{3}{323} a^{10} + \frac{55}{323} a^{8} - \frac{73}{323} a^{6} + \frac{52}{323} a^{4} - \frac{6}{17} a^{2}$, $\frac{1}{323} a^{13} + \frac{3}{323} a^{11} + \frac{55}{323} a^{9} - \frac{73}{323} a^{7} + \frac{52}{323} a^{5} - \frac{6}{17} a^{3}$, $\frac{1}{526879365419345724659241353037203} a^{14} + \frac{144513672856953571126598910804}{526879365419345724659241353037203} a^{12} + \frac{5882226537205664227903228870680}{526879365419345724659241353037203} a^{10} + \frac{128933674318463317707494160469139}{526879365419345724659241353037203} a^{8} - \frac{110560492945013269844298261780834}{526879365419345724659241353037203} a^{6} + \frac{95140539157864651386934065813419}{526879365419345724659241353037203} a^{4} + \frac{10973274283988230123654362021222}{27730492916807669718907439633537} a^{2} + \frac{5855442960079262285500459950}{15836946268879308805772381287}$, $\frac{1}{526879365419345724659241353037203} a^{15} + \frac{144513672856953571126598910804}{526879365419345724659241353037203} a^{13} + \frac{5882226537205664227903228870680}{526879365419345724659241353037203} a^{11} + \frac{128933674318463317707494160469139}{526879365419345724659241353037203} a^{9} - \frac{110560492945013269844298261780834}{526879365419345724659241353037203} a^{7} + \frac{95140539157864651386934065813419}{526879365419345724659241353037203} a^{5} + \frac{10973274283988230123654362021222}{27730492916807669718907439633537} a^{3} + \frac{5855442960079262285500459950}{15836946268879308805772381287} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8636232266.44 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1665:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 6144
The 78 conjugacy class representatives for t16n1665 are not computed
Character table for t16n1665 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.9$x^{8} + 6 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.9$x^{8} + 6 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$103$103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.4.2.1$x^{4} + 927 x^{2} + 265225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
103.8.4.1$x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$