Normalized defining polynomial
\( x^{16} - 4 x^{15} - 290 x^{14} + 1060 x^{13} + 12775 x^{12} - 42032 x^{11} + 1094828 x^{10} - 2557780 x^{9} + 20197965 x^{8} - 32604540 x^{7} + 117179468 x^{6} - 118981912 x^{5} + 97186535 x^{4} - 236386720 x^{3} - 414545290 x^{2} + 61506276 x + 16346881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4134006486278719588795586854986572265625=5^{14}\cdot 29^{6}\cdot 101^{4}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $299.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 101, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{8} - \frac{1}{10} a^{7} + \frac{3}{20} a^{6} - \frac{1}{5} a^{5} - \frac{1}{4} a^{4} + \frac{3}{10} a^{3} - \frac{7}{20} a^{2} + \frac{2}{5} a - \frac{9}{20}$, $\frac{1}{20} a^{9} - \frac{1}{20} a^{7} + \frac{1}{10} a^{6} - \frac{3}{20} a^{5} - \frac{1}{5} a^{4} + \frac{1}{4} a^{3} - \frac{3}{10} a^{2} + \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{20} a^{10} + \frac{1}{10} a^{5} + \frac{1}{20}$, $\frac{1}{20} a^{11} + \frac{1}{10} a^{6} + \frac{1}{20} a$, $\frac{1}{172840} a^{12} - \frac{369}{172840} a^{11} - \frac{91}{43210} a^{10} - \frac{21}{17284} a^{9} - \frac{3381}{172840} a^{8} - \frac{8313}{86420} a^{7} - \frac{3821}{172840} a^{6} + \frac{2633}{86420} a^{5} + \frac{3135}{34568} a^{4} + \frac{6587}{86420} a^{3} - \frac{39071}{86420} a^{2} + \frac{9463}{172840} a + \frac{13527}{34568}$, $\frac{1}{172840} a^{13} + \frac{1747}{172840} a^{11} + \frac{1873}{86420} a^{10} - \frac{3093}{172840} a^{9} - \frac{2483}{172840} a^{8} - \frac{11637}{172840} a^{7} - \frac{39247}{172840} a^{6} - \frac{20189}{172840} a^{5} + \frac{41677}{172840} a^{4} - \frac{23907}{86420} a^{3} - \frac{12507}{172840} a^{2} + \frac{19189}{43210} a + \frac{13671}{34568}$, $\frac{1}{17456840} a^{14} - \frac{13}{8728420} a^{13} - \frac{41}{17456840} a^{12} + \frac{81067}{4364210} a^{11} - \frac{184227}{17456840} a^{10} - \frac{4033}{601960} a^{9} + \frac{6747}{601960} a^{8} - \frac{4128013}{17456840} a^{7} + \frac{581543}{17456840} a^{6} + \frac{3422623}{17456840} a^{5} - \frac{1447639}{8728420} a^{4} + \frac{766969}{17456840} a^{3} + \frac{1967827}{4364210} a^{2} + \frac{1640463}{3491368} a - \frac{249839}{1745684}$, $\frac{1}{1284414372869691541529966475227034992450991095240} a^{15} - \frac{6995742942576385577433232452967641085999}{1284414372869691541529966475227034992450991095240} a^{14} + \frac{257688228356639836138043761597960339172619}{128441437286969154152996647522703499245099109524} a^{13} + \frac{826628985189638940532553241668443533423069}{321103593217422885382491618806758748112747773810} a^{12} - \frac{20990967361216913000284390378813665151753953283}{1284414372869691541529966475227034992450991095240} a^{11} + \frac{2988006331401421993515460966614664280435190299}{128441437286969154152996647522703499245099109524} a^{10} + \frac{2535561107108800068544065024671067227868628773}{256882874573938308305993295045406998490198219048} a^{9} + \frac{4370276811852321991796367032128574490255164337}{321103593217422885382491618806758748112747773810} a^{8} + \frac{189161791922572027042064892735126898543253924573}{1284414372869691541529966475227034992450991095240} a^{7} - \frac{67615136328323364927124458595561791069246521019}{321103593217422885382491618806758748112747773810} a^{6} + \frac{23874711856658577606945759275555992195471761569}{321103593217422885382491618806758748112747773810} a^{5} + \frac{153485134036040083993277143665155391064820350379}{1284414372869691541529966475227034992450991095240} a^{4} + \frac{97818467460255308971884501954663256839919380523}{1284414372869691541529966475227034992450991095240} a^{3} - \frac{25226456313568703210452684627568488329282104237}{321103593217422885382491618806758748112747773810} a^{2} + \frac{128700869364850777359772352303979924679522521183}{321103593217422885382491618806758748112747773810} a - \frac{189573085982275026847920989656784872384580202099}{642207186434845770764983237613517496225495547620}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7963521636260 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1276 |
| Character table for t16n1276 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.540125.2, 8.8.29465236578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||
| $149$ | 149.4.3.3 | $x^{4} + 298$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.4.3.4 | $x^{4} + 1192$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |