Normalized defining polynomial
\( x^{16} - 5 x^{15} + 4 x^{14} + 12 x^{13} - 10 x^{12} + 12 x^{11} - 203 x^{10} + 487 x^{9} - 378 x^{8} + 33 x^{7} + 22 x^{6} - 112 x^{5} + 250 x^{4} - 32 x^{3} - 71 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4051995944984100000000=2^{8}\cdot 3^{4}\cdot 5^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} - \frac{3}{10} a^{9} + \frac{3}{10} a^{8} + \frac{3}{10} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a - \frac{1}{10}$, $\frac{1}{10} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{3}{10} a^{5} + \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{3}{10}$, $\frac{1}{100} a^{12} + \frac{3}{100} a^{11} + \frac{1}{25} a^{10} + \frac{1}{25} a^{9} + \frac{31}{100} a^{8} + \frac{19}{100} a^{7} - \frac{31}{100} a^{6} + \frac{11}{100} a^{5} + \frac{41}{100} a^{4} - \frac{6}{25} a^{3} + \frac{19}{100} a^{2} + \frac{27}{100} a + \frac{11}{100}$, $\frac{1}{500} a^{13} + \frac{1}{500} a^{12} + \frac{2}{125} a^{11} - \frac{1}{125} a^{10} + \frac{163}{500} a^{9} + \frac{77}{500} a^{8} - \frac{219}{500} a^{7} + \frac{13}{500} a^{6} - \frac{111}{500} a^{5} - \frac{53}{250} a^{4} - \frac{223}{500} a^{3} - \frac{81}{500} a^{2} + \frac{57}{500} a - \frac{13}{125}$, $\frac{1}{1000} a^{14} - \frac{1}{1000} a^{13} + \frac{1}{1000} a^{12} + \frac{3}{200} a^{11} - \frac{49}{1000} a^{10} - \frac{469}{1000} a^{9} + \frac{59}{125} a^{8} - \frac{247}{500} a^{7} + \frac{9}{500} a^{6} - \frac{289}{1000} a^{5} - \frac{2}{125} a^{4} + \frac{87}{200} a^{3} - \frac{63}{500} a^{2} + \frac{299}{1000} a + \frac{99}{1000}$, $\frac{1}{2345000} a^{15} - \frac{573}{2345000} a^{14} - \frac{487}{2345000} a^{13} - \frac{7117}{2345000} a^{12} + \frac{58291}{2345000} a^{11} + \frac{37299}{2345000} a^{10} - \frac{56697}{117250} a^{9} + \frac{62193}{167500} a^{8} + \frac{45659}{167500} a^{7} - \frac{105853}{469000} a^{6} - \frac{54156}{293125} a^{5} + \frac{1104947}{2345000} a^{4} - \frac{62583}{1172500} a^{3} - \frac{158569}{2345000} a^{2} - \frac{745349}{2345000} a + \frac{104224}{293125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59768.0944119 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n984 |
| Character table for t16n984 is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |