Normalized defining polynomial
\( x^{16} - 4 x^{15} - 179 x^{14} + 1374 x^{13} - 3913 x^{12} - 14574 x^{11} + 746968 x^{10} - 2562342 x^{9} - 21733511 x^{8} + 77486790 x^{7} + 282455831 x^{6} - 891092496 x^{5} - 1833365633 x^{4} + 5009780308 x^{3} + 3843574804 x^{2} - 11718369616 x + 7578526976 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397286244885795491769071181517306466749106209=71^{10}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{5}{16} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{96} a^{12} + \frac{1}{48} a^{11} + \frac{1}{96} a^{10} - \frac{1}{48} a^{9} - \frac{1}{24} a^{8} + \frac{1}{16} a^{7} + \frac{3}{32} a^{6} + \frac{1}{16} a^{5} - \frac{5}{32} a^{4} - \frac{3}{8} a^{3} + \frac{1}{12} a^{2} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{192} a^{13} - \frac{1}{192} a^{12} - \frac{5}{192} a^{11} + \frac{7}{192} a^{10} + \frac{1}{96} a^{9} + \frac{1}{32} a^{8} + \frac{5}{64} a^{7} + \frac{1}{64} a^{6} - \frac{3}{64} a^{5} + \frac{15}{64} a^{4} - \frac{13}{48} a^{3} + \frac{3}{16} a^{2} + \frac{1}{12} a$, $\frac{1}{1545432576} a^{14} + \frac{67827}{257572096} a^{13} - \frac{13139}{48294768} a^{12} + \frac{793469}{128786048} a^{11} - \frac{67291777}{1545432576} a^{10} - \frac{2863579}{48294768} a^{9} + \frac{140497297}{1545432576} a^{8} + \frac{3988289}{32196512} a^{7} - \frac{3167521}{32196512} a^{6} + \frac{61531897}{257572096} a^{5} + \frac{271878827}{1545432576} a^{4} - \frac{8670265}{386358144} a^{3} + \frac{105954389}{386358144} a^{2} + \frac{8222779}{96589536} a + \frac{2912723}{6036846}$, $\frac{1}{77960935088513058815368077720596635225168716307021824} a^{15} + \frac{6002511582092550719519426226734217385398407}{77960935088513058815368077720596635225168716307021824} a^{14} - \frac{34091717755681099656114680464539189878079715676339}{38980467544256529407684038860298317612584358153510912} a^{13} + \frac{29054133027186740193829223525098825099403828963477}{6496744590709421567947339810049719602097393025585152} a^{12} + \frac{699593437692998962826876786204507771963591755402201}{25986978362837686271789359240198878408389572102340608} a^{11} - \frac{3889224672380404051373836424345372482942822252442741}{77960935088513058815368077720596635225168716307021824} a^{10} - \frac{619013580123449153706187776494656624567598101992367}{77960935088513058815368077720596635225168716307021824} a^{9} + \frac{800519279366375897864653347463276533275198300338759}{25986978362837686271789359240198878408389572102340608} a^{8} + \frac{17207812156700724944920054345105339467779668999091}{812093073838677695993417476256214950262174128198144} a^{7} + \frac{84900588355608813777768936713920033206669280691761}{12993489181418843135894679620099439204194786051170304} a^{6} - \frac{682459757207322308903976840134313097023912872750407}{77960935088513058815368077720596635225168716307021824} a^{5} - \frac{4894877984622826813007242307255149903288095462944735}{25986978362837686271789359240198878408389572102340608} a^{4} + \frac{129685394575026948106218413001703729576109249460607}{406046536919338847996708738128107475131087064099072} a^{3} + \frac{1564366436499530165451478233736345232068751190390231}{6496744590709421567947339810049719602097393025585152} a^{2} - \frac{2269802133276509679262181726183204965355150937842417}{4872558443032066175960504857537289701573044769188864} a - \frac{27813649138153702714321804868069507277618412595205}{101511634229834711999177184532026868782771766024768}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4327900930910000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.280732967047165372057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |