Normalized defining polynomial
\( x^{16} - 6 x^{15} + 124 x^{14} - 487 x^{13} - 2951 x^{12} - 6448 x^{11} - 861906 x^{10} + 2484917 x^{9} + 3448164 x^{8} + 85441192 x^{7} - 65989784 x^{6} - 258626096 x^{5} + 208451456 x^{4} + 55014144 x^{3} + 53723776 x^{2} - 65689600 x - 15665152 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397286244885795491769071181517306466749106209=71^{10}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{3}{32} a^{6} + \frac{1}{32} a^{5} - \frac{5}{32} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{3}{64} a^{7} + \frac{1}{64} a^{6} - \frac{5}{64} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{384} a^{12} - \frac{1}{192} a^{11} - \frac{1}{192} a^{10} - \frac{3}{128} a^{9} + \frac{1}{128} a^{8} + \frac{5}{96} a^{7} + \frac{5}{48} a^{6} - \frac{41}{384} a^{5} - \frac{17}{192} a^{4} + \frac{7}{24} a^{3} - \frac{7}{16} a^{2} + \frac{1}{24} a - \frac{1}{6}$, $\frac{1}{1536} a^{13} - \frac{7}{1536} a^{10} + \frac{13}{512} a^{9} - \frac{5}{768} a^{8} + \frac{19}{768} a^{7} - \frac{21}{512} a^{6} + \frac{29}{768} a^{5} + \frac{17}{96} a^{4} + \frac{25}{192} a^{3} + \frac{19}{96} a^{2} - \frac{5}{24} a - \frac{1}{3}$, $\frac{1}{6144} a^{14} - \frac{1}{3072} a^{13} - \frac{31}{6144} a^{11} - \frac{67}{6144} a^{10} + \frac{5}{384} a^{9} - \frac{43}{3072} a^{8} + \frac{125}{6144} a^{7} + \frac{37}{384} a^{6} - \frac{85}{512} a^{5} - \frac{157}{768} a^{4} + \frac{21}{64} a^{3} - \frac{83}{192} a^{2} + \frac{11}{24} a + \frac{5}{12}$, $\frac{1}{15439811372179060414739829884573290221382987657124511744} a^{15} - \frac{149754771483715464576905696581899689019632302521449}{3859952843044765103684957471143322555345746914281127936} a^{14} + \frac{100868623497388294597093271376036255157899110522959}{1286650947681588367894985823714440851781915638093709312} a^{13} + \frac{6253449415358229247322023423503835659837042836254123}{5146603790726353471579943294857763407127662552374837248} a^{12} - \frac{22545265878667982282029822047169330330117295838651319}{5146603790726353471579943294857763407127662552374837248} a^{11} + \frac{8910680666318443841621119957301457842410975385434481}{2573301895363176735789971647428881703563831276187418624} a^{10} + \frac{146095276516263490996046316009620413552400607205643357}{7719905686089530207369914942286645110691493828562255872} a^{9} - \frac{689257696175281721245667319396426183312895837660410391}{15439811372179060414739829884573290221382987657124511744} a^{8} + \frac{307517425759326096929315779434919258318162946974413081}{2573301895363176735789971647428881703563831276187418624} a^{7} - \frac{304627956946835813957569012178705792575375967605719035}{3859952843044765103684957471143322555345746914281127936} a^{6} - \frac{181368662625340115294261979680089556125554008942878927}{964988210761191275921239367785830638836436728570281984} a^{5} + \frac{5417910483763639233568725810391630292367372734318983}{23536297823443689656615594336239771678937481184641024} a^{4} + \frac{78762354003638992899252512418010717210590701452901561}{160831368460198545986873227964305106472739454761713664} a^{3} + \frac{17609094257609455434251532474583131472889481463159559}{241247052690297818980309841946457659709109182142570496} a^{2} + \frac{748007356661603429246890010090343256743464374591351}{30155881586287227372538730243307207463638647767821312} a - \frac{6271198886874517887945587346831490358611957473855055}{15077940793143613686269365121653603731819323883910656}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3999364699030000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.280732967047165372057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |