Normalized defining polynomial
\( x^{16} + 28 x^{14} + 130 x^{12} - 1388 x^{10} - 8510 x^{8} + 7196 x^{6} + 37682 x^{4} - 35244 x^{2} + 7921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3888223178515238551136763904=2^{46}\cdot 17^{8}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{8} + \frac{3}{7} a^{6} - \frac{3}{7} a^{4} - \frac{3}{14} a^{2} + \frac{1}{14}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{9} + \frac{3}{7} a^{7} - \frac{3}{7} a^{5} - \frac{3}{14} a^{3} + \frac{1}{14} a$, $\frac{1}{112} a^{12} + \frac{1}{56} a^{10} - \frac{25}{112} a^{8} - \frac{1}{7} a^{6} + \frac{7}{16} a^{4} + \frac{17}{56} a^{2} - \frac{25}{112}$, $\frac{1}{112} a^{13} + \frac{1}{56} a^{11} - \frac{25}{112} a^{9} - \frac{1}{7} a^{7} + \frac{7}{16} a^{5} + \frac{17}{56} a^{3} - \frac{25}{112} a$, $\frac{1}{91982788339792} a^{14} + \frac{57600318781}{13140398334256} a^{12} - \frac{1363002112679}{91982788339792} a^{10} - \frac{20358135768689}{91982788339792} a^{8} + \frac{2567402638071}{13140398334256} a^{6} - \frac{16230623041861}{91982788339792} a^{4} - \frac{1945674702385}{13140398334256} a^{2} + \frac{417617914743}{1033514475728}$, $\frac{1}{183965576679584} a^{15} - \frac{1}{183965576679584} a^{14} + \frac{57600318781}{26280796668512} a^{13} - \frac{57600318781}{26280796668512} a^{12} - \frac{1363002112679}{183965576679584} a^{11} + \frac{1363002112679}{183965576679584} a^{10} - \frac{20358135768689}{183965576679584} a^{9} + \frac{20358135768689}{183965576679584} a^{8} + \frac{2567402638071}{26280796668512} a^{7} - \frac{2567402638071}{26280796668512} a^{6} + \frac{75752165297931}{183965576679584} a^{5} - \frac{75752165297931}{183965576679584} a^{4} - \frac{1945674702385}{26280796668512} a^{3} + \frac{1945674702385}{26280796668512} a^{2} + \frac{417617914743}{2067028951456} a - \frac{417617914743}{2067028951456}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87058605.7096 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n984 |
| Character table for t16n984 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), 4.4.4352.1 x2, 4.4.9248.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.5473632256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.34 | $x^{8} + 32 x^{4} + 144$ | $8$ | $1$ | $24$ | $Q_8:C_2$ | $[2, 3, 4]^{2}$ |
| 2.8.22.102 | $x^{8} + 8 x^{7} + 16 x^{5} + 144$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 89 | Data not computed | ||||||