Normalized defining polynomial
\( x^{16} - 2 x^{15} - 432 x^{14} + 3189 x^{13} + 45677 x^{12} - 683348 x^{11} + 4486191 x^{10} - 28234100 x^{9} - 528567471 x^{8} + 16652185199 x^{7} - 118567987102 x^{6} - 764164602577 x^{5} + 14583743055018 x^{4} - 43451566069395 x^{3} - 200403824876743 x^{2} + 689590561853787 x + 1412711161908947 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(385383672585505073080666077824760451253265689=19^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $611.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{1844} a^{14} - \frac{59}{1844} a^{13} + \frac{77}{922} a^{12} + \frac{131}{1844} a^{11} + \frac{97}{1844} a^{10} - \frac{201}{1844} a^{9} + \frac{909}{1844} a^{8} - \frac{215}{922} a^{7} + \frac{597}{1844} a^{6} + \frac{107}{1844} a^{5} - \frac{673}{1844} a^{4} + \frac{875}{1844} a^{3} + \frac{183}{922} a^{2} - \frac{385}{1844} a - \frac{99}{1844}$, $\frac{1}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{15} + \frac{605813462741867889374633068143117952549205356967862841788503103843406658525595669583557617611}{8068086894292809545465191715131746951595409090904562211666151322329953006580012822178154879560658} a^{14} + \frac{869843018658793943869261661765583646819660471039136435830160583676166406246761805016778802603297}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{13} + \frac{403811840486980158500737947726827641859397900947810675922938258422939035104546086763234098929696}{4034043447146404772732595857565873475797704545452281105833075661164976503290006411089077439780329} a^{12} - \frac{1964102184939992589945179085550690040707493140199556898174725227525952966108372356812221510025789}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{11} + \frac{872489663352584824784279840783769315475546111185344406262219106364393275822488549292662580178955}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{10} - \frac{828536043374377606171779906432778858216618046293915591377552007446738131658715130549961515002912}{4034043447146404772732595857565873475797704545452281105833075661164976503290006411089077439780329} a^{9} - \frac{3782534644544730530183652401312553140239849804711304729034403836265286431569661841207277693005741}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{8} + \frac{1014869659436568702416132222126910429938311364669986099821136667913242694605718762517312755657061}{4034043447146404772732595857565873475797704545452281105833075661164976503290006411089077439780329} a^{7} + \frac{2343066594457200608661274497763274726223965557161667881007977052941633952028652774067118267331157}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{6} - \frac{819517421738914331642190530235881465168086536217060393086446107664198653808895205308083802363441}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{5} - \frac{3759311334276970787376019539838799951197341816096327229131225676376146488490310148512601860899037}{8068086894292809545465191715131746951595409090904562211666151322329953006580012822178154879560658} a^{4} + \frac{2987221246746188562293576826037572418843539441670817983854830270511737643510542182219387421976829}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a^{3} - \frac{3631239045985869161142631043817323314589880155442797509689633751321184519426456599570169578334625}{8068086894292809545465191715131746951595409090904562211666151322329953006580012822178154879560658} a^{2} - \frac{4831389669979117598963772765862073979140614874967134099445313274760271911930647365251362922903813}{16136173788585619090930383430263493903190818181809124423332302644659906013160025644356309759121316} a + \frac{787625709955014620213042924227152762139045725572995746302987302989844951352274194023957460812249}{8068086894292809545465191715131746951595409090904562211666151322329953006580012822178154879560658}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13898886654100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.5764271794920234809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 89 | Data not computed | ||||||