Normalized defining polynomial
\( x^{16} - 4 x^{14} - 288 x^{12} - 384 x^{11} - 302 x^{10} + 576 x^{9} + 29902 x^{8} + 64448 x^{7} + 125608 x^{6} + 226144 x^{5} - 692715 x^{4} - 2446848 x^{3} - 2728132 x^{2} - 1271952 x + 165953 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37503454031498105061376000000=2^{32}\cdot 5^{6}\cdot 7^{6}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{287} a^{12} - \frac{48}{287} a^{11} + \frac{1}{287} a^{10} + \frac{72}{287} a^{9} - \frac{12}{41} a^{8} - \frac{24}{287} a^{7} - \frac{124}{287} a^{6} - \frac{12}{287} a^{5} - \frac{3}{7} a^{4} - \frac{102}{287} a^{3} + \frac{33}{287} a^{2} - \frac{57}{287} a - \frac{19}{287}$, $\frac{1}{287} a^{13} - \frac{1}{41} a^{11} + \frac{120}{287} a^{10} - \frac{72}{287} a^{9} - \frac{38}{287} a^{8} - \frac{128}{287} a^{7} + \frac{9}{41} a^{6} - \frac{125}{287} a^{5} + \frac{3}{41} a^{4} + \frac{16}{287} a^{3} + \frac{92}{287} a^{2} + \frac{115}{287} a - \frac{51}{287}$, $\frac{1}{82369} a^{14} - \frac{24}{82369} a^{13} + \frac{141}{82369} a^{12} + \frac{6960}{82369} a^{11} - \frac{31217}{82369} a^{10} - \frac{4874}{82369} a^{9} + \frac{1780}{11767} a^{8} - \frac{1852}{82369} a^{7} - \frac{6213}{82369} a^{6} - \frac{6791}{82369} a^{5} - \frac{31033}{82369} a^{4} - \frac{29738}{82369} a^{3} - \frac{29927}{82369} a^{2} - \frac{15265}{82369} a - \frac{16512}{82369}$, $\frac{1}{1118843002966151765379429919334410769} a^{15} - \frac{160996112345750285684127566080}{27288853730881750375108046813034409} a^{14} - \frac{247591349591492209199968596781980}{159834714709450252197061417047772967} a^{13} + \frac{53825151776906884957993285162722}{159834714709450252197061417047772967} a^{12} - \frac{179809090674910762419954056788159564}{1118843002966151765379429919334410769} a^{11} + \frac{320557041660057434847402283809310024}{1118843002966151765379429919334410769} a^{10} - \frac{434750277990446045377040555242053239}{1118843002966151765379429919334410769} a^{9} - \frac{324118808840555307511912461806492893}{1118843002966151765379429919334410769} a^{8} - \frac{198991569043437020020058940766353999}{1118843002966151765379429919334410769} a^{7} - \frac{45879263988316462100441678822327682}{159834714709450252197061417047772967} a^{6} + \frac{34472161795705687654676816425074847}{159834714709450252197061417047772967} a^{5} + \frac{183508677750227231448042056073775554}{1118843002966151765379429919334410769} a^{4} - \frac{428208960197751825372452897707048078}{1118843002966151765379429919334410769} a^{3} - \frac{310079172923261958260195012317429499}{1118843002966151765379429919334410769} a^{2} + \frac{8295980791352908996197141211571482}{1118843002966151765379429919334410769} a + \frac{425830815863352126869051830389633459}{1118843002966151765379429919334410769}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102717106.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1189 are not computed |
| Character table for t16n1189 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.8434585600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |