Normalized defining polynomial
\( x^{16} - x^{15} + 18 x^{14} - 35 x^{13} + 52 x^{12} - 239 x^{11} + 154 x^{10} + 356 x^{9} + 171 x^{8} - 511 x^{7} - 2056 x^{6} + 3518 x^{5} - 33 x^{4} - 2432 x^{3} + 851 x^{2} + 186 x - 67 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(373033834495810703959553=17^{15}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{137} a^{14} - \frac{59}{137} a^{13} + \frac{33}{137} a^{12} + \frac{3}{137} a^{11} + \frac{61}{137} a^{10} - \frac{24}{137} a^{9} + \frac{41}{137} a^{8} + \frac{12}{137} a^{7} - \frac{61}{137} a^{6} - \frac{45}{137} a^{5} + \frac{4}{137} a^{4} + \frac{10}{137} a^{3} + \frac{7}{137} a^{2} - \frac{55}{137} a + \frac{57}{137}$, $\frac{1}{29345375458215303446803} a^{15} + \frac{62148182013505022436}{29345375458215303446803} a^{14} - \frac{7729347102623594877862}{29345375458215303446803} a^{13} - \frac{6727023575548304481719}{29345375458215303446803} a^{12} - \frac{8198318362972618905168}{29345375458215303446803} a^{11} - \frac{8790303164322315576657}{29345375458215303446803} a^{10} + \frac{1344153994178670948225}{29345375458215303446803} a^{9} + \frac{2823906535042360480067}{29345375458215303446803} a^{8} + \frac{11100012059662492923682}{29345375458215303446803} a^{7} - \frac{2290608535404597005230}{29345375458215303446803} a^{6} - \frac{2607657434615127125109}{29345375458215303446803} a^{5} - \frac{83696155522023871701}{29345375458215303446803} a^{4} - \frac{2801953230466366886358}{29345375458215303446803} a^{3} + \frac{308850175838207418883}{29345375458215303446803} a^{2} + \frac{14428841887259340947523}{29345375458215303446803} a + \frac{5295317482415839586512}{29345375458215303446803}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 454664.771694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | R | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $19$ | 19.8.4.2 | $x^{8} - 13718 x^{2} + 1303210$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |