Normalized defining polynomial
\( x^{16} - 6 x^{15} + 129 x^{14} - 671 x^{13} + 6058 x^{12} - 26624 x^{11} + 64298 x^{10} - 280059 x^{9} - 2350140 x^{8} + 5714488 x^{7} - 31636488 x^{6} + 58581679 x^{5} + 775454875 x^{4} - 127242000 x^{3} - 2543361055 x^{2} + 290985398 x + 1902420484 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35826423586415848519139534914245144961=13^{14}\cdot 157^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{26} a^{8} - \frac{3}{26} a^{7} - \frac{5}{26} a^{6} - \frac{3}{13} a^{5} + \frac{1}{13} a^{4} - \frac{11}{26} a^{3} + \frac{11}{26} a^{2} + \frac{3}{26} a - \frac{2}{13}$, $\frac{1}{26} a^{9} - \frac{1}{26} a^{7} + \frac{5}{26} a^{6} - \frac{3}{26} a^{5} + \frac{4}{13} a^{4} - \frac{9}{26} a^{3} + \frac{5}{13} a^{2} - \frac{4}{13} a - \frac{6}{13}$, $\frac{1}{52} a^{10} - \frac{1}{52} a^{9} - \frac{5}{26} a^{7} - \frac{1}{4} a^{6} - \frac{2}{13} a^{5} + \frac{6}{13} a^{4} - \frac{5}{52} a^{3} - \frac{7}{52} a^{2} - \frac{7}{26} a + \frac{2}{13}$, $\frac{1}{52} a^{11} - \frac{1}{52} a^{9} - \frac{1}{52} a^{7} - \frac{19}{52} a^{6} + \frac{2}{13} a^{5} - \frac{1}{4} a^{4} - \frac{9}{26} a^{3} - \frac{15}{52} a^{2} + \frac{6}{13} a + \frac{5}{13}$, $\frac{1}{81640} a^{12} - \frac{35}{4082} a^{11} - \frac{16}{10205} a^{10} + \frac{85}{16328} a^{9} - \frac{1219}{81640} a^{8} + \frac{2569}{16328} a^{7} + \frac{1759}{16328} a^{6} + \frac{4439}{16328} a^{5} - \frac{3706}{10205} a^{4} - \frac{281}{8164} a^{3} - \frac{10997}{81640} a^{2} + \frac{1329}{8164} a - \frac{6023}{20410}$, $\frac{1}{81640} a^{13} - \frac{36}{10205} a^{11} + \frac{63}{16328} a^{10} - \frac{449}{81640} a^{9} + \frac{213}{16328} a^{8} - \frac{1673}{16328} a^{7} + \frac{253}{1256} a^{6} - \frac{1187}{20410} a^{5} + \frac{3039}{8164} a^{4} - \frac{20207}{81640} a^{3} + \frac{406}{2041} a^{2} - \frac{4684}{10205} a + \frac{877}{2041}$, $\frac{1}{4245280} a^{14} - \frac{3}{849056} a^{13} + \frac{1}{326560} a^{12} - \frac{151}{65312} a^{11} + \frac{493}{163280} a^{10} - \frac{1221}{65312} a^{9} - \frac{2803}{326560} a^{8} - \frac{8453}{65312} a^{7} + \frac{19627}{163280} a^{6} + \frac{7921}{65312} a^{5} - \frac{491}{65312} a^{4} + \frac{29967}{65312} a^{3} - \frac{65743}{326560} a^{2} - \frac{59925}{424528} a + \frac{212707}{1061320}$, $\frac{1}{4506540487785517443825178546124123119027379360} a^{15} - \frac{202465754755612580575570808711744853423}{2253270243892758721912589273062061559513689680} a^{14} - \frac{3400443172701476797143108078984399619}{2253270243892758721912589273062061559513689680} a^{13} + \frac{709952003859076845550834365761112738053}{173328480299442978608660713312466273808745360} a^{12} + \frac{768773104913582379357807424240294244560567}{346656960598885957217321426624932547617490720} a^{11} - \frac{2694393514821420866399113998023562677877787}{346656960598885957217321426624932547617490720} a^{10} - \frac{36386685413999584503805008105308179179885}{2476121147134899694409438761606661054410648} a^{9} + \frac{247138584195413594861253058869449111941823}{17332848029944297860866071331246627380874536} a^{8} + \frac{17578743342927728336612747248662740213108349}{346656960598885957217321426624932547617490720} a^{7} + \frac{158695569246525195696749404831165841518316571}{346656960598885957217321426624932547617490720} a^{6} + \frac{401297312389308190700913557534126173670087}{1456541851255823349652611036239212384947440} a^{5} + \frac{31277913469588005032132978563164025446439651}{86664240149721489304330356656233136904372680} a^{4} + \frac{628246447284500341350031053272517445706887}{1666620002879259409698660704927560325084090} a^{3} + \frac{13085051331043790421044629934743912395227051}{28704079540035142954300500293784223688072480} a^{2} + \frac{25379204533728460272173538508535760806745475}{64379149825507392054645407801773187414676848} a - \frac{19710239475344218413679554909382280086801205}{225327024389275872191258927306206155951368968}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15803632252900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2041}) \), \(\Q(\sqrt{157}) \), 4.4.344929.1 x2, 4.4.54153853.1 x2, \(\Q(\sqrt{13}, \sqrt{157})\), 8.8.2932639794745609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $157$ | 157.8.4.1 | $x^{8} + 739470 x^{4} - 3869893 x^{2} + 136703970225$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 157.8.6.2 | $x^{8} + 1727 x^{4} + 887364$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |