Normalized defining polynomial
\( x^{16} - 8 x^{15} + 44 x^{14} - 68 x^{13} - 654 x^{12} + 1252 x^{11} + 604 x^{10} + 5176 x^{9} + 3373 x^{8} - 31284 x^{7} + 20768 x^{6} - 90488 x^{5} + 50116 x^{4} + 5244 x^{3} - 29896 x^{2} + 3732 x - 103 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35726164858960310037146238976=2^{44}\cdot 7^{8}\cdot 137^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{213} a^{14} + \frac{1}{71} a^{13} - \frac{14}{213} a^{12} + \frac{2}{213} a^{11} - \frac{68}{213} a^{10} - \frac{104}{213} a^{9} - \frac{32}{213} a^{8} + \frac{17}{213} a^{7} + \frac{11}{213} a^{6} + \frac{7}{71} a^{5} - \frac{95}{213} a^{4} - \frac{8}{213} a^{3} + \frac{98}{213} a^{2} + \frac{7}{71} a + \frac{41}{213}$, $\frac{1}{683956475511950990916495586728351885183} a^{15} - \frac{124749001663942785771563147811748719}{227985491837316996972165195576117295061} a^{14} - \frac{45416156847740924616108556280761019774}{683956475511950990916495586728351885183} a^{13} - \frac{16931456890897932526427852812105220927}{227985491837316996972165195576117295061} a^{12} - \frac{30755136433321344452287982147522953813}{227985491837316996972165195576117295061} a^{11} + \frac{15657920292157562730798674145699194230}{683956475511950990916495586728351885183} a^{10} - \frac{245029146581867879891969347093561667080}{683956475511950990916495586728351885183} a^{9} - \frac{280270245153685007236714690231038118828}{683956475511950990916495586728351885183} a^{8} + \frac{133570520593618054861543517736557535019}{683956475511950990916495586728351885183} a^{7} + \frac{255463145306344515526928015056160362658}{683956475511950990916495586728351885183} a^{6} - \frac{72352336591576314263082024061707473442}{227985491837316996972165195576117295061} a^{5} + \frac{92068870640855094074976918257858947593}{227985491837316996972165195576117295061} a^{4} - \frac{65038318714913572318054415908137936916}{683956475511950990916495586728351885183} a^{3} + \frac{95477480919249112155446097870525246324}{227985491837316996972165195576117295061} a^{2} - \frac{86863604939625728067274163299159203531}{227985491837316996972165195576117295061} a - \frac{291770980099452395481588419699348036606}{683956475511950990916495586728351885183}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 171364036.152 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.C_2\wr C_2^2$ (as 16T394):
| A solvable group of order 128 |
| The 17 conjugacy class representatives for $C_2.C_2\wr C_2^2$ |
| Character table for $C_2.C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{14}) \), 4.4.7168.1 x2, 4.4.25088.1 x2, \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.10070523904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 137 | Data not computed | ||||||