Properties

Label 16.8.35717732754...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{56}\cdot 5^{6}\cdot 17^{2}\cdot 41^{6}\cdot 137^{2}\cdot 35089^{2}$
Root discriminant $812.00$
Ramified primes $2, 5, 17, 41, 137, 35089$
Class number $16$ (GRH)
Class group $[2, 2, 2, 2]$ (GRH)
Galois group 16T1127

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![280665274177700436025, 0, -1229247489897179560, 0, -118702711888152884, 0, 40185108913616, 0, 1565106740490, 0, 560738536, 0, -3250812, 0, -256, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 256*x^14 - 3250812*x^12 + 560738536*x^10 + 1565106740490*x^8 + 40185108913616*x^6 - 118702711888152884*x^4 - 1229247489897179560*x^2 + 280665274177700436025)
 
gp: K = bnfinit(x^16 - 256*x^14 - 3250812*x^12 + 560738536*x^10 + 1565106740490*x^8 + 40185108913616*x^6 - 118702711888152884*x^4 - 1229247489897179560*x^2 + 280665274177700436025, 1)
 

Normalized defining polynomial

\( x^{16} - 256 x^{14} - 3250812 x^{12} + 560738536 x^{10} + 1565106740490 x^{8} + 40185108913616 x^{6} - 118702711888152884 x^{4} - 1229247489897179560 x^{2} + 280665274177700436025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(35717732754345647446813752640158274945024000000=2^{56}\cdot 5^{6}\cdot 17^{2}\cdot 41^{6}\cdot 137^{2}\cdot 35089^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $812.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17, 41, 137, 35089$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} + \frac{1}{4} a^{4} - \frac{1}{8}$, $\frac{1}{8} a^{9} + \frac{1}{4} a^{5} - \frac{1}{8} a$, $\frac{1}{8} a^{10} + \frac{1}{4} a^{6} - \frac{1}{8} a^{2}$, $\frac{1}{8} a^{11} + \frac{1}{4} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{120} a^{12} + \frac{7}{120} a^{10} - \frac{1}{20} a^{8} + \frac{19}{60} a^{6} - \frac{41}{120} a^{4} + \frac{11}{40} a^{2} - \frac{1}{3}$, $\frac{1}{120} a^{13} + \frac{7}{120} a^{11} - \frac{1}{20} a^{9} + \frac{19}{60} a^{7} - \frac{41}{120} a^{5} + \frac{11}{40} a^{3} - \frac{1}{3} a$, $\frac{1}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{14} - \frac{7732855948642199545339800050377405027397287136690942644775432442063107}{1929492641388643188022723422079997144373156978186391576837316232534823600} a^{12} - \frac{324533442202189618439389300608394799974273892801021953443872102594560357}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{10} + \frac{161827004484403115316346777898649334403443253287102789189469464356939521}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{8} - \frac{58485780002426577271053816751913867058293017041737418592247487692767949}{165385083547597987544804864749714040946270598130262135157484248502984880} a^{6} + \frac{1410505946013320837837893208677213997919413472061816402107218090851877111}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{4} - \frac{1612536450894233328755352536704236185716580095942333446610281171389089}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{2} - \frac{136577811267212466848081536424727740383592646635770054274630591}{345517493311991536255020697520786458565686121969133827208234960}$, $\frac{1}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{15} - \frac{7732855948642199545339800050377405027397287136690942644775432442063107}{1929492641388643188022723422079997144373156978186391576837316232534823600} a^{13} - \frac{324533442202189618439389300608394799974273892801021953443872102594560357}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{11} + \frac{161827004484403115316346777898649334403443253287102789189469464356939521}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{9} - \frac{58485780002426577271053816751913867058293017041737418592247487692767949}{165385083547597987544804864749714040946270598130262135157484248502984880} a^{7} + \frac{1410505946013320837837893208677213997919413472061816402107218090851877111}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{5} - \frac{1612536450894233328755352536704236185716580095942333446610281171389089}{5788477924165929564068170266239991433119470934559174730511948697604470800} a^{3} - \frac{136577811267212466848081536424727740383592646635770054274630591}{345517493311991536255020697520786458565686121969133827208234960} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12341574495500000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1127:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 58 conjugacy class representatives for t16n1127 are not computed
Character table for t16n1127 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.44066406400.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.2$x^{4} - 17 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
17.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
$41$41.4.2.2$x^{4} - 41 x^{2} + 20172$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$137$137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
137.4.2.2$x^{4} - 137 x^{2} + 112614$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
137.8.0.1$x^{8} - x + 5$$1$$8$$0$$C_8$$[\ ]^{8}$
35089Data not computed