Normalized defining polynomial
\( x^{16} + 6016 x^{14} + 8466180 x^{12} - 3440773616 x^{10} - 7383828560092 x^{8} + 2977885992852704 x^{6} + 521183847139500304 x^{4} - 244559727285312582720 x^{2} + 4490644386843206976400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35717732754345647446813752640158274945024000000=2^{56}\cdot 5^{6}\cdot 17^{2}\cdot 41^{6}\cdot 137^{2}\cdot 35089^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $812.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 41, 137, 35089$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{36} a^{8} + \frac{1}{18} a^{6} - \frac{2}{9} a^{4} - \frac{1}{9}$, $\frac{1}{72} a^{9} + \frac{1}{36} a^{7} + \frac{5}{36} a^{5} - \frac{1}{2} a^{3} - \frac{1}{18} a$, $\frac{1}{72} a^{10} - \frac{1}{12} a^{6} + \frac{2}{9} a^{4} + \frac{5}{18} a^{2} + \frac{4}{9}$, $\frac{1}{72} a^{11} - \frac{1}{12} a^{7} + \frac{2}{9} a^{5} + \frac{5}{18} a^{3} + \frac{4}{9} a$, $\frac{1}{72} a^{12} + \frac{1}{18} a^{6} + \frac{1}{9} a^{4} + \frac{1}{9} a^{2} + \frac{1}{3}$, $\frac{1}{144} a^{13} + \frac{1}{36} a^{7} + \frac{1}{18} a^{5} - \frac{4}{9} a^{3} + \frac{1}{6} a$, $\frac{1}{14711461750469534530516795381482101074053909118300310348508303596730942000} a^{14} + \frac{27689862510081829424385426912705924697376104026886253383528534536922603}{7355730875234767265258397690741050537026954559150155174254151798365471000} a^{12} + \frac{1761071545947411765998912078158489837358542270148708651707121257631791}{735573087523476726525839769074105053702695455915015517425415179836547100} a^{10} - \frac{61999957516146292425622777465161644882297433875164397777203552728709}{12019168096788835400749015834544200223900252547630972506951228428701750} a^{8} + \frac{4487174917830560430917756464750462391420709527067645010758219392705119}{54086256435549759303370571255448901007551136464339376281280527929157875} a^{6} + \frac{209445471509196387283591060584654685365386498688151040416711168583165453}{1838932718808691816314599422685262634256738639787538793563537949591367750} a^{4} - \frac{18921620470811307921545303088318482277742742831432460276760457468668517}{1838932718808691816314599422685262634256738639787538793563537949591367750} a^{2} - \frac{5016078407804134528405694749324356530008344175153314639679342}{54883462604181731776477225726722739929417799295854354476698775}$, $\frac{1}{14711461750469534530516795381482101074053909118300310348508303596730942000} a^{15} - \frac{46783203802541442057595780768213852508399938601090759542028372570119669}{14711461750469534530516795381482101074053909118300310348508303596730942000} a^{13} + \frac{1761071545947411765998912078158489837358542270148708651707121257631791}{735573087523476726525839769074105053702695455915015517425415179836547100} a^{11} - \frac{61999957516146292425622777465161644882297433875164397777203552728709}{12019168096788835400749015834544200223900252547630972506951228428701750} a^{9} + \frac{11939115622927824023296517941729749453732711834455093789557263356469601}{216345025742199037213482285021795604030204545857357505125122111716631500} a^{7} + \frac{53641271343245643188612212995514491731117176016643887053812863469600289}{919466359404345908157299711342631317128369319893769396781768974795683875} a^{5} + \frac{798381810110829499329387773660687132947474430407473670195923075683050483}{1838932718808691816314599422685262634256738639787538793563537949591367750} a^{3} - \frac{28326644350335512982303798074222959703155954782258080771591609}{109766925208363463552954451453445479858835598591708708953397550} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35248379797500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1127 are not computed |
| Character table for t16n1127 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.44066406400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.4.2.2 | $x^{4} - 137 x^{2} + 112614$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 137.8.0.1 | $x^{8} - x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 35089 | Data not computed | ||||||